Skip to main content

Cell Lineage Analysis in Xenopus Embryos

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 135))

Abstract

Cell lineage studies reveal what kinds of tissues descend from a single cell or specific region of an embryo. By defining precisely from which cells the various tissues and organs arise one can elucidate the mechanisms that control body organization, understand morphogenetic movements, and test the influence of exogenously applied gene products on these events. Because of easy accessibility, complete fate maps of the early cleavage stages of Xenopus have been published (14). However, fate maps only describe the developmental path taken by a cell under normal, intact embryo conditions. Such studies cannot describe the full developmental potential of a cell or the times or mechanisms by which its fate is determined. The fate expressed by a cell, that is, the different tissue types that descend from it, is usually influenced by a number of factors, which may include maternal determinant molecules, cell-cell interactions, growth factor signals, and position within a morphogen gradient. Cell lineage tracing in Xenopus, therefore, is an essential technique to test the fate of a cell as it develops under novel experimental conditions (5). Lineage tracing also is an important tool for labeling host tissues for use in tissue recombinant experiments. The ability to recognize the origin of embryonic tissues was critical for interpreting the pioneering experiments of embryonic inductions (6,7). These early studies used pigmentation differences between donor and host species, but modern lineage labeling is more long lasting and reliable and allows tissues to be recombined within the same species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dale, L. and Slack, J. M. W. (1987) Fate map of the 32-cell stage of Xenopus laevis. Development 100, 279–295.

    PubMed  CAS  Google Scholar 

  2. Moody, S. A. (1987) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev. Biol. 119, 560–578.

    Article  PubMed  CAS  Google Scholar 

  3. Moody, S. A. (1987) Fates of the blastomeres of the 32-cell stage Xenopus embryo. Dev. Biol. 122, 300–319.

    Article  PubMed  CAS  Google Scholar 

  4. Moody, S. A. and Kline, M. J. (1990) Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Anat. Embryol. 182, 347–362.

    Article  PubMed  CAS  Google Scholar 

  5. Moody, S. A. (1999) Testing the cell fate commitment of single blastomeres in Xenopus laevis, in Advances in Molecular Biology: A Comparative Methods Approach to the Study of Oocytes and Embryos (Richter, J., ed.), Oxford University Press, Oxford, UK, pp. 355–381.

    Google Scholar 

  6. Spemann, H. and Mangold, H. (1924) Induction of embryonic primordia by implantation of organizers from a different species, in Foundations of Experimental Embryology (Willier, B. H. and Oppenheimer, J. M., eds.), Hafner, New York, pp. 144–184.

    Google Scholar 

  7. Nieuwkoop, P. D. (1973) The “organization center” of the amphibian embryo: Its origin, spatial organization and morphogenetic action. Adv. Morphogen. 10, 1–39.

    CAS  Google Scholar 

  8. Guthrie, S., Turin, L., and Warner, A. E. (1988) Patterns of junctional communication during development of the early amphibian embryo. Development 103, 769–783.

    PubMed  CAS  Google Scholar 

  9. Weisblat, D. A., Sawyer, R. T., and Stent, G. S. (1978) Cell lineage analysis by intracellular injection of a tracer enzyme. Science 202, 1295–1298.

    Article  PubMed  CAS  Google Scholar 

  10. Jacobson, M. (1985) Clonal analysis and cell lineages of the vertebrate nervous system. Annu. Rev. Neurosci. 8, 71–102.

    Article  PubMed  CAS  Google Scholar 

  11. Stent, G. S. and Weisblat, D. A. (1985) Cell lineage in the development of invertebrate nervous systems. Annu. Rev. Neurosci. 8, 45–70.

    Article  PubMed  CAS  Google Scholar 

  12. Gimlich, R. L. and Braun, J. (1985) Improved fluorescent compounds for tracing cell lineage. Dev. Biol. 109, 509–514.

    Article  PubMed  CAS  Google Scholar 

  13. Vize, P. D., Melton, D. A., Hemmati-Brivanlou, A., and Harland, R. M. (1991) Assays for gene function in developing Xenopus embryos. Methods Cell Biol. 36, 367–387.

    Article  PubMed  CAS  Google Scholar 

  14. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  15. Etheridge, A. L. and Richter, S. M. A. (1978) Xenopus laevis: Rearing and Breeding the African Clawed Frog. Nasco, Ft. Atkinson, WI.

    Google Scholar 

  16. Heasman, J., Holwill, S., and Wylie, C. C. (1991) Fertilization of cultured Xenopus oocytes and use in studies of maternally inherited molecules. Methods Cell Biol. 36, 213–230.

    Article  PubMed  CAS  Google Scholar 

  17. Vincent, J.-P. and Gerhart, J. C. (1987) Subcortical rotation in Xenopus eggs: An early step in embryonic axis specification. Dev. Biol. 123, 526–539.

    Article  PubMed  CAS  Google Scholar 

  18. Klein, S. L. (1987) The first cleavage furrow demarcates the dorsal-ventral axis in Xenopus embryos. Dev. Biol. 120, 299–304.

    Article  PubMed  CAS  Google Scholar 

  19. Masho, R. (1990) Close correlation between the first cleavage plane and the body axis in early Xenopus embryos. Dev. Growth Differ. 32, 57–64.

    Article  Google Scholar 

  20. Hainski, A. M. and Moody, S. A. (1992) Xenopus maternal RNAs from a dorsal animal blastomere induce a secondary axis in host embryos. Development 116, 347–355.

    PubMed  CAS  Google Scholar 

  21. Peng, H. B. (1991) Appendix A: Solutions and protocols. Methods Cell Biol. 36, 657–662.

    Article  PubMed  CAS  Google Scholar 

  22. Nakamura, O. and Kishiyama, K. (1971) Prospective fates of blastomeres at the 32-cell stage of Xenopus laevis embryos. Proc. Japan Acad. 47, 407–412.

    Google Scholar 

  23. Hirose, G. and Jacobson, M. (1979) Clonal organization of the central nervous system of the frog. I. Clones stemming from individual blastomeres of the 16-cell and earlier stages. Dev. Biol. 71, 191–202.

    Article  PubMed  CAS  Google Scholar 

  24. Jacobson, M. and Hirose, G. (1981) Clonal organization of the central nervous system of the frog. II. Clones stemming from individual blastomeres of the 32-and 64-cell stages. J. Neurosci. 1, 271–284.

    PubMed  CAS  Google Scholar 

  25. Sullivan, S. A., Moore, K. B., and Moody, S. A. (1998) Early events in frog blastomere fate determination, in Cell Lineage and Fate Determination (Moody, S. A., ed.), Academic, New York, pp. 297–321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Moody, S.A. (2000). Cell Lineage Analysis in Xenopus Embryos. In: Walker, J.M., Tuan, R.S., Lo, C.W. (eds) Developmental Biology Protocols. Methods in Molecular Biology™, vol 135. Humana Press. https://doi.org/10.1385/1-59259-685-1:331

Download citation

  • DOI: https://doi.org/10.1385/1-59259-685-1:331

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-852-3

  • Online ISBN: 978-1-59259-685-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics