Skip to main content
Log in

Thermozymes and their applications

A review of recent literature and patents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymes from thermophilic microorganisms, thermozymes, have unique characteristics such as temperature, chemical, and pH stability. They can be used in several industrial processes, in which they replace mesophilic enzymes or chemicals. Thermozymes are often used when the enzymatic process is compatible with existing (high-temperature) process conditions. The main advantages of performing processes at higher temperatures are reduced risk of microbial contamination, lower viscosity, improved transfer rates, and improved solubility of substrates. However, cofactors, substrates, or products might be unstable or other side reactions may occur. Recent developments show that thermophiles are a good source of novel catalysts that are of great industrial interest. Thermostable polymer-degrading enzymes such as amylases, pullulanases, xylanases, proteases, and cellulases are expected to play an important role in food, chemical, pharmaceutical, paper, pulp, and waste-treatment industries. Considerable research efforts have been made to better understand the stability of thermozymes. There are no major conformational differences with mesophilic enzymes, and a small number of extra salt bridges, hydrophobic interactions, or hydrogen bounds seem to confer the extra degree of stabilization. Currently, overexpression of thermozymes in standard Escherichia coli allows the production of much larger quantities of enzymes, which are easy to purify by heat treatment. With wider availability and lower cost, thermophilic enzymes will see more application in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brock, T. D. (1985), Science 230, 132–138.

    Article  CAS  Google Scholar 

  2. Vieille, C., Burdette, D. S., and Zeikus, J. G. (1996), Biotechnol. Annu. Rev. 2, 1–83.

    CAS  Google Scholar 

  3. Woese, C. R., Kandler, O., and Wheelis, M. L. (1990), Proc. Natl. Acad. Sci. USA 87, 4576–4579.

    Article  CAS  Google Scholar 

  4. Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S., and Miyata, T. (1989), Proc. Natl. Acad. Sci. USA 86, 9355–9359.

    Article  CAS  Google Scholar 

  5. D’Auria, S., Moracci, M., Febbraio, F., Tanfani, F., Nucci, R., and Rossi, M. (1998), Biochimie 80, 949–957.

    Article  CAS  Google Scholar 

  6. Brandts, J. F. (1967), in Thermobiology, Rose, A. H., ed., Academic, New York, pp. 25–72.

    Google Scholar 

  7. Jaenicke, R. (1991), Eur. J. Biochem. 202, 715–728.

    Article  CAS  Google Scholar 

  8. Jaenicke, R. (1996), FASEB J. 10, 84–92.

    CAS  Google Scholar 

  9. Matthews, B. W. (1993), Annu. Rev. Biochem. 62, 139–160.

    Article  CAS  Google Scholar 

  10. Nosoh, Y. and Sekiguchi, T. (1988), Biocatalysis 1, 257–273.

    Article  Google Scholar 

  11. Maes, D., Zeelen, J. P., Thanki, N., Beaucamp, N., Alvarez, M., Thi, M. D., Backmann, J., Martial, J. A., Wyns, L., Jaenicke, R., and Wierenga, R. K. (1999), Proteins: Struct. Funct. Genet. 37, 441–453.

    Article  CAS  Google Scholar 

  12. Vieille, C. and Zeikus, J. G. (1996), Trends Biotechnol. 14, 183–190.

    Article  CAS  Google Scholar 

  13. Facchiano, A. M., Colonna, G., and Ragone, R. (1998), Protein Eng. 11, 753–760.

    Article  CAS  Google Scholar 

  14. Nosoh, Y. and Sekiguchi, T. (1990), Trends Biotechnol. 8, 16–20.

    Article  CAS  Google Scholar 

  15. Mrabet, N. T., Van den Broeck, A., Van den Brande, I., Stanssens, P., Laroche, Y., and Lambeir, A. M. (1992), Biochemistry 31, 2239–2253.

    Article  CAS  Google Scholar 

  16. Jaenicke, R. (1998), Biochemistry (Moscow) 63, 312–321.

    CAS  Google Scholar 

  17. Ahern, T. J. and Klibanov, A. M. (1985), Science 228, 1280–1284.

    Article  CAS  Google Scholar 

  18. Daniel, R. M. (1996), Enzyme Microb. Technol. 19, 74–79.

    Article  CAS  Google Scholar 

  19. Jenkins, N. and Curling, E. -M. A. (1994), Enzyme Microb. Technol. 16, 354–364.

    Article  CAS  Google Scholar 

  20. Michels, P. C. and Clark, D. S. (1997), Appl. Environ. Microbiol. 63, 3985–3991.

    CAS  Google Scholar 

  21. Clark, D. S., Sun, M. M., Giarto, L., Michels, P. C., Matschiner, A., and Robb, F. T. (1996), Prog. Biotechnol. 13, 195–202.

    CAS  Google Scholar 

  22. Chien, A., Edgar, D. B., and Trela, J. M. (1976), J. Bacteriol. 127, 1550–1557.

    CAS  Google Scholar 

  23. Morana, A., Moracci, M., Ottombrino, A., Ciaramella, M., Rossi, M., and DeRosa, M. (1995), Biotechnol. Appl. Biochem. 22, 261–268.

    CAS  Google Scholar 

  24. Niehaus, F., Bertoldo, C., Kahler, M., and Antranikian, G. (1999), Appl. Microbiol. Biotechnol. 51, 711–729.

    Article  CAS  Google Scholar 

  25. Sellek, G. A. and Chaudhuri, J. B. (1999), Enzyme Microb. Technol. 25, 471–482.

    Article  CAS  Google Scholar 

  26. Peek, K., Ruttersmith, L. D., Daniel, R. M., Morgan, H. W., and Bergquist, P. L. (1992), BFE 9, 466–470.

    Google Scholar 

  27. Wilkinson, D., Reuter, S., and Zimmermann, W. (1998), in Contributions of the 4th International Workshop on Carbohydrates as Organic Raw Materials, Vienna, Austria, March 20–21, 1997, Praznik, W. and Huber, A., eds., WUV Universitaetsverlag, Vienna, Austria, pp. 176–189.

    Google Scholar 

  28. Zeikus, J. G. (1996), Prog. Biotechnol. 12, 145–161.

    Article  CAS  Google Scholar 

  29. Cowan, D. A., Daniel, R. M., and Morgan, H. W. (1987), Int. J. Biochem. 19, 741–743.

    Article  CAS  Google Scholar 

  30. More, N., Daniel, R. M., and Petach, H. H. (1995), Biochem. J. 305, 17–20.

    CAS  Google Scholar 

  31. Daniel, R. M., Toogood, H. S., and Bergquist, P. L. (1995), Biotechnol. Genet. Eng. Rev. 13, 50–100.

    Google Scholar 

  32. Endo, E. (1962), J. Ferment. Technol. 40, 346–353.

    CAS  Google Scholar 

  33. Daniel, R. M., Cowan, D. A., Morgan, H. W., and Curran, M. P. (1982), Biochem. J. 207, 641–644.

    CAS  Google Scholar 

  34. Wilson, S. A., Peek, K., and Daniel, R. M. (1994), Biotechnol. Bioeng. 43, 225–231.

    Article  CAS  Google Scholar 

  35. Wilson, S. A., Daniel, R. M., and Peek, K. (1994), Biotechnol. Bioeng. 44, 337–346.

    Article  CAS  Google Scholar 

  36. Isowa, Y., Ohmori, M., Ichikawa, T., Mori, K., Nonaka, Y., Kihara, K., and Oyama, K. (1979), Tetrahedron Lett. 28, 2611, 2612.

    Article  Google Scholar 

  37. Nakanishi, K., Takeuchi, A., and Matsuno, R. (1990), Appl. Microbiol. Biotechnol. 32, 633–636.

    Article  CAS  Google Scholar 

  38. Coolbear, T., Monk, C., Peek, K., Morgan, H. W., and Daniel, R. M. (1992), J. Membr. Sci. 67, 93–101.

    Article  CAS  Google Scholar 

  39. Wilson, S. A., Young, O. A., Coolbear, T., and Daniel, R. M. (1992), Meat Sci. 32, 93–103.

    Article  CAS  Google Scholar 

  40. Lévêque, E., Janeček, Š., Haye, B., and Belarbi, A. (2000), Enzyme Microb. Technol. 26, 3–14.

    Article  Google Scholar 

  41. Olsen, H. S. (1995), in Handbook of Starch Hydrolysis Products and Their Derivates, Kearsley, M. W. and Dziedzic, S. Z., eds., Aspen, p. 30.

  42. Nigam, P. and Singh, D. (1995), Enzyme Microb. Technol. 17, 770–778.

    Article  CAS  Google Scholar 

  43. Antranikian, G., Koch, R., Spreinat, A., and Lemke, K. (1995), Crit. Rev. Food Sci. Nutr. 35, 373–403.

    Article  Google Scholar 

  44. Koch, R., Spreinat, A., Lemke, K., and Antranikian, G. (1991), Arch. Microbiol. 155, 572–578.

    Article  CAS  Google Scholar 

  45. Wind, R. D., Buitelaar, R. M., Eggink, G., Huizing, H. J., and Dijkhuizen, L. (1994), Appl. Microbiol. Biotechnol. 41, 155–162.

    Article  CAS  Google Scholar 

  46. Lee, J. T., Kanai, H., Kobayashi, T., Akiba, T., and Kudo, T. (1996), J. Ferment. Bioeng. 82, 432–438.

    Article  CAS  Google Scholar 

  47. Canganella, F., Andrade, C. M., and Antranikian, G. (1994), Appl. Microbiol. Biotechnol. 42, 239–245.

    CAS  Google Scholar 

  48. Liebl, W., Stemplinger, I., and Ruile, P. (1997), J. Bacteriol. 179, 941–948.

    CAS  Google Scholar 

  49. Kwak, Y. S., Akiba, T., and Kudo, T. (1998), J. Ferment. Bioeng. 86, 363–367.

    Article  CAS  Google Scholar 

  50. Antranikian, G. (1991), in Microbial Degradation of Natural Products, Winkelmann, G., ed., Wiley-VCH Verlag GmbH, Weinheim, Germany, pp. 28–56.

    Google Scholar 

  51. Ganghofner, D., Kellermann, J., Staudenbauer, W. L., and Bronnenmeier, K. (1998), Biosci. Biotechnol. Biochem. 62, 302–308.

    Article  CAS  Google Scholar 

  52. Wind, R. D. (1997), PhD thesis, Rijksuniversiteit Groningen, The Netherlands.

    Google Scholar 

  53. Koch, R., Canganella, F., Hippe, H., Jahnke, K. D., and Antranikian, G. (1997), Appl. Environ. Microbiol. 63, 1088–1094.

    CAS  Google Scholar 

  54. Bertoldo, C., Duffner, F., Jorgensen, P. L., and Antranikian, G. (1999), Appl. Environ. Microbiol. 65, 2084–2091.

    CAS  Google Scholar 

  55. Duchiron, F., Legin, E., Ladrat, C., Gantelet, H., and Barbier, G. (1997), Ind. Crops Prod. 6, 265–270.

    Article  CAS  Google Scholar 

  56. Brown, S. H. and Kelly, R. M. (1993), Appl. Environ. Microbiol. 59, 2614–2621.

    CAS  Google Scholar 

  57. Gantelet, H. and Duchiron, F. (1998), Appl. Microbiol. Biotechnol. 49, 770–777.

    Article  CAS  Google Scholar 

  58. Rudiger, A., Jorgensen, P. L., and Antranikian, G. (1995), Appl. Environ. Microbiol. 61, 567–575.

    CAS  Google Scholar 

  59. Dong, G., Vieille, C., and Zeikus, J. G. (1997), Appl. Environ. Microbiol. 63, 3577–3584.

    CAS  Google Scholar 

  60. Starnes, R. L. (1990), Cereal Foods World 35, 1094–1099.

    CAS  Google Scholar 

  61. Kim, T. J., Kim, B. C., and Lee, H. S. (1997), Enzyme Microb. Technol. 20, 506–509.

    Article  CAS  Google Scholar 

  62. Wind, R. D., Liebel, W., Buitelaar, R. M., Penninga, D., Spreinat, A., Dijkhuizen, L., and Bahl, H. (1995), Appl. Environ. Microbiol. 61, 1257–1265.

    CAS  Google Scholar 

  63. Liu, S. Y., Wiegel, J., and Gherardini, F. C. (1996), J. Bacteriol. 178, 5938–5945.

    CAS  Google Scholar 

  64. Park, B. C., Koh, S., Chang, C., Suh, S. W., Lee, D. S., and Byun, S. M. (1997), Appl. Biochem. Biotechnol. 61, 15–27.

    Google Scholar 

  65. Quax, W. J. (1993), Trends Food Sci. Technol. 4, 31–34.

    Article  CAS  Google Scholar 

  66. Bauer, M. W., Halio, S. B., and Kelly, R. M. (1996), Adv. Prot. Chem. 48, 271–307.

    Article  CAS  Google Scholar 

  67. Kengen, S. W. M., Luesink, E. J., Stams, A. J. M., and Zehnder, A. J. B. (1993), Eur. J. Biochem. 213, 305–312.

    Article  CAS  Google Scholar 

  68. Pisani, F. M., Rella, R., Raia, C. A., Rozzo, C., Nucci, R., and Rossi, M. (1990), Eur. J. Biochem. 187, 321–328.

    Article  CAS  Google Scholar 

  69. Petzelbauer, I., Nidetzky, B., Haltrich, D., and Kulbe, K. D. (1999), Biotechnol. Bioeng. 64, 322–332.

    Article  CAS  Google Scholar 

  70. Boon, M. A., vanderOost, J., De Vos, W. M., Janssen, A. E. M., and van’t Riet, K. (1998), Appl. Biochem. Biotechnol. 75, 269–278.

    CAS  Google Scholar 

  71. Fischer, L., Bromann, R., Kengen, S. W. M., De Vos, W. M., and Wagner, F. (1996), Bio-Technology 14, 88–91.

    CAS  Google Scholar 

  72. Reuter, S., Nygaard, A. R., and Zimmermann, W. (1999), Enzyme Microb. Technol. 25, 509–516.

    Article  CAS  Google Scholar 

  73. Kulkarni, N., Shendye, A., and Rao, M. (1999), FEMS Microbiol. Rev. 23, 411–456.

    Article  CAS  Google Scholar 

  74. Chen, C. C., Adolphson, R., Dean, J.-F. D., Eriksson, K.-E. L., Adams, M.-W. W., and Westpheling, J. (1997), Enzyme Microb. Technol. 20, 39–45.

    Article  CAS  Google Scholar 

  75. Garg, A. P., McCarthy, A. J., and Roberts, J. C. (1996), Enzyme Microb. Technol. 18, 261–267.

    Article  CAS  Google Scholar 

  76. Kulkarni, N. and Rao, M. (1996), J. Biotechnol. 51, 167–173.

    Article  CAS  Google Scholar 

  77. Garg, A. P., Roberts, J. C., and McCarthy, A. J. (1998), Enzyme Microb. Technol. 22, 594–598.

    Article  CAS  Google Scholar 

  78. Kotewitz, M. L., Sampson, C. M., D’Alessio, J. M., and Gerard, G. F. (1988), Nucl. Acids Res. 16, 265–277.

    Article  Google Scholar 

  79. Innis, M. A., Myambo, K. B., Gelfand, D. H., and Brow, M. D. (1988), Proc. Natl. Acad. Sci. USA 85, 9436–9440.

    Article  CAS  Google Scholar 

  80. Takahashi, M., Yamaguchi, E., and Uchida, T. (1984), J. Biol. Chem. 259, 10,041–10,047.

    CAS  Google Scholar 

  81. Barany, F. (1991), Proc. Natl. Acad. Sci. USA 88, 189–193.

    Article  CAS  Google Scholar 

  82. Kaczorowski, T. and Szybalski, W. (1996), Gene 179, 189–193.

    Article  CAS  Google Scholar 

  83. Quinlan, P. and Moore, S. (1993), INFORM 4, 580–585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieke E. Bruins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruins, M.E., Janssen, A.E.M. & Boom, R.M. Thermozymes and their applications. Appl Biochem Biotechnol 90, 155–186 (2001). https://doi.org/10.1385/ABAB:90:2:155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:90:2:155

Index Entries

Navigation