Skip to main content
Log in

Structure and function of S-adenosylhomocysteine hydrolase

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In mammals, S-adenosylhomocysteine hydrolase (AdoHcyase) is the only known enzyme to catalyze the breakdown of S-adenosylhomocysteine (AdoHcy) to homocysteine and adenosine. AdoHcy is the product of all adenosylmethionine (AdoMet)-dependent biological transmethylations. These reactions have a wide range of products, and are common in all facets of biometabolism. As a product inhibitor, elevated levels of AdoHcy suppress AdoMet-dependent transmethylations. Thus, AdoHcyase is a regulator of biological transmethylation in general. The three-dimensional structure of AdoHcyase complexed with reduced nicotinamide adenine dinucleotide phosphate (NADH) and the inhibitor (1′R, 2′S, 3′R)-9-(2′,3′-dihyroxycyclopenten-1-yl)adenine (DHCeA) was solved by a combination of the crystallographic direct methods program, SnB, to determine the selenium atom substructure and by treating the multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. The enzyme architecture resembles that observed for NAD-dependent dehydrogenases, with the catalytic domain and the cofactor binding domain each containing a modified Rossmann fold. The two domains form a deep active site cleft containing the cofactor and bound inhibitor molecule. A comparison of the inhibitor complex of the human enzyme and the structure of the rat enzyme, solved without inhibitor, suggests that a 17° rigid body movement of the catalytic domain occurs upon inhibitor/substrate binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. de la Haba, G. and Cantoni, G. (1959) The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J. Biol. Chem. 234 603–608.

    Google Scholar 

  2. Keller, B. T. and Borchardt, R. T. (1988) in Antiviral Drug Development—A Multidisciplinary Approach (De Clercq, E. and Walker, R. T., eds.), Plenum, New York, pp. 123–138.

    Google Scholar 

  3. Cantoni, G. L. (1975) Biological Methylation: selected aspects. Annu. Rev. Biochem. 44, 435–451.

    PubMed  CAS  Google Scholar 

  4. Cantoni, G. L. and Chiang, P. K. (1980) in Natural Sulfur Compounds (Cavallini, D. and Gaull, G. E., eds.), Plenum, New York, pp 67–80.

    Google Scholar 

  5. Chiang, P. K. and Cantoni, G. L. (1979) Perturbation of biochemical transmethylations by 3-deazaadenosine in vivo. Biochem. Pharmacol. 28, 1897–1902.

    PubMed  CAS  Google Scholar 

  6. Liu, S., Wolfe, M. S. and Borchardt, R. T. (1992) Rational approaches to the design of antiviral agents based on S-adenosyl-L-homocysteine hydrolase as a molecular target. Antiviral Res. 19, 247–265.

    PubMed  CAS  Google Scholar 

  7. Hershfield, M. S. and Kredich, N. M. (1978) S-adenosylhomocysteine hydrolase is an adenosine-binding protein: a target for adenosine toxicity. Science 202, 757–760.

    PubMed  CAS  Google Scholar 

  8. Hershfield, M. S. (1979) Apparent suicide inactivation of human lymphoblast S-adenosylhomocysteine hydrolase by 2′-deoxyadenosine and adenine arabinoside: A basis for direct toxic effects of analogs of adenosine. J. Biol. Chem. 254, 22–25.

    PubMed  CAS  Google Scholar 

  9. Kredich, N. M. and Martin, D. W., Jr. (1977) Role of S-adenosylhomocysteine in adenosine mediated toxicity in cultured mouse T lymphoma cells. Cell 12, 931–938.

    PubMed  CAS  Google Scholar 

  10. Hershfield, M. S., Kredich, N. M., Ownby, D. R., Ownby, H., and Buckley, R. (1979) In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2′-deoxyadenosine in adenosine deaminase-deficient patients. J. Clin. Invest. 63, 807–811.

    PubMed  CAS  Google Scholar 

  11. Robinson, K., Mayer, E., and Jacobsen, D. W. (1994) Homocysteine and coronary artery disease. Clev. Clin. J. Med. 61, 438–450.

    CAS  Google Scholar 

  12. McKeever, M. P., Weir, D. G., Molloy, A., and Scott, J. M. (1991) Betaine: homocysteine methyltransferase: organ distribution in man, pig and rat and subcellular distribution in the rat. Clin. Sci. 81, 551–556.

    PubMed  CAS  Google Scholar 

  13. Graham, I., Daly, L., Refsum, H., Robinson, K., Brattstrom, L., Ueland, P., Palma-Reis, R., Boers, G., Sheahan, R., Israelsson, B., et al. (1997) Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 277, 1775–1781.

    PubMed  CAS  Google Scholar 

  14. Refsum, H., Ueland, P., Nygard, O., and Vollset, S. (1998) Homocysteine and cardiovascular disease Annu. Rev. Med. 49, 31–62.

    PubMed  CAS  Google Scholar 

  15. Majors, A., Ehrhart, L., and Pezacka, E. (1997) Homocysteine as a risk factor for vascular disease. Enhanced collagen production and accumulation by smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 17, 2074–2081.

    PubMed  CAS  Google Scholar 

  16. Perna, A. G., Ingrosso, D., De Santo, N. G., Galletti, P., Brunone, M. and Zappia, V. (1997) Metabolic consequences of folate-induced reduction of hyperhomocysteinemia in uremia. J. Am. Soc. Nephrol. 8, 1899–1905.

    PubMed  CAS  Google Scholar 

  17. Smolin, L. and Benevenga, N. (1982) Accumulation of homocysteine in vitamin B-6 deficiency: a model for the study of cystathionine beta-synthase deficiency. J. Nutr. 112, 1264–1272.

    PubMed  CAS  Google Scholar 

  18. Mudd, S. (1985) Vascular disease and homocysteine metabolism. N. Engl. J. Med. 313, 751–753.

    Article  PubMed  CAS  Google Scholar 

  19. Brouwer, I., van Dusseldorp, M., Thomas, C., Duran, M., Hautvast J. G., Eskes, T. K. and Steegers-Theunissen, R. P. (1999) Low-dose folic acid supplementation decreases plasma homocysteine concentrations: a randomized trial. Am. J. Clin. Nutr. 69, 99–104.

    PubMed  CAS  Google Scholar 

  20. Henderson, D. M., Hanson, S., Allen, T., Wilson, K., Coulter-Karis, D. E., Greenberg, M. L., Hershfield, M. S. and Ullman, B. (1992) Cloning of the gene encoding Leishmania donovani S-adenosylhomocysteine hydrolase, a potential target for antiparasitic chemotherapy. Mol. Biochem. Parasitol. 53, 169–183.

    PubMed  CAS  Google Scholar 

  21. Fujioka, M. and Takata, Y. (1981) S-adenosylhomocysteine hydrolase from rat liver: purification and some properties. J. Biol. Chem. 256, 1631–1635.

    PubMed  CAS  Google Scholar 

  22. Palmer, J. L. and Abeles, R. H. (1979) The mechanism of action of S-adenosylhomocysteinase. J. Biol. Chem. 254, 1217–1226.

    PubMed  CAS  Google Scholar 

  23. Bethin, K. E., Petrovic, N., and Ettinger, M. J. (1995) Identification of a Major Hepatic Copper Binding Protein as S-Adenosylhomocysteine Hydrolase. J. Biol. Chem. 270, 20,698–20,702.

    CAS  Google Scholar 

  24. Stockand, J. D., Al-Baldawi, N. F., Al-Khalili O. K., Worrell, R. T. and Eaton, D. C. (1999) S-adenosyl-L-homocysteine hydrolase regulates aldosterone-induced Na+ transport. J. Biol. Chem. 274, 3842–3850.

    PubMed  CAS  Google Scholar 

  25. De Clercq, E., Deschamps, J., De Somer, P., and Holy, A. (1978) (S)-9-(2,3-Dihydroxypropyl)adenine: an aliphatic nucleoside analog with broad-spectrum antiviral activity. Science 200, 563.

    Google Scholar 

  26. Banerjee, A. K. (1980) 5′-terminal cap structure in eukaryotic messenger ribonucleic acids. Microbiol. Rev. 44, 175–205.

    PubMed  CAS  Google Scholar 

  27. Green, M. R., Manicetis, T., and Metton, D. A. (1983) Human beta-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei. Cell 32, 681–694.

    PubMed  CAS  Google Scholar 

  28. Konarska, M. M., Padgett, R. A. and Sharp, P. A. (1984) Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38, 731–736.

    PubMed  CAS  Google Scholar 

  29. Ransohoff, R. M., Narayan, P., Ayers, D. F., Rottman, F. M. and Nilsen, T. W. (1987) Priming of influenza mRNA transcription is inhibited in CHO cells treated with the methylation inhibitor neplanocin A. Antiviral Res. 7, 317–327.

    PubMed  CAS  Google Scholar 

  30. Yuan, C.-S., Liu, S., Wnuk, S. F., Robins, M. J., Borchardt, R. T. (1996) Design and synthesis of S-adenosylhomocysteine hydrolase inhibitors as broad-spectrum antiviral agents. Adv. Antiviral Drug Design 2, 41–88.

    CAS  Google Scholar 

  31. Wolfe, M. S. and Borchardt, R. T. (1991) S-adenosyl-L-homocysteine hydrolase as a target for antiviral chemotherapy. J. Med. Chem. 34, 1521–1530.

    PubMed  CAS  Google Scholar 

  32. De Clercq, E. (1987) S-Adenosylhomocysteine hydrolase inhibitors as broad-spectrum antiviral agents. Biochem. Pharmacol. 36, 2567–2575.

    PubMed  Google Scholar 

  33. Borchardt, R. T., Keller, B. T. and Patel-Thombre, U. (1984) Neplanocin A. A potent inhibitor of S-adenosylhomocysteine hydrolase and of vaccinia virus multiplication in mouse L929 cells. J. Biol. Chem. 259, 4353–4358.

    PubMed  CAS  Google Scholar 

  34. Ramakrishnan, V. and Borchardt, R. T. (1987) Adenosine dialdehyde and neplanocin A: Potent inhibitors of S-adenosylhomocysteine hydrolase in neuroblastoma N2a cells. Neurochem. Int. 10, 423–431.

    CAS  PubMed  Google Scholar 

  35. Keller, B. T. and Borchardt, R. T. (1987) Adenosine dialdehyde: a potent inhibitor of vaccinia virus multiplication in mouse L929 cells. Mol. Pharmacol. 31, 485–492.

    PubMed  CAS  Google Scholar 

  36. Keller, B. T. and Borchardt, R. T. (1986) in Biological Methylation and Drug Design (Borchardt, R. T., Creveling, C. R. and Ueland, P. M., eds.), Humana, Clifton, NJ, pp. 385–396.

    Google Scholar 

  37. Bartel, R. L. and Borchardt, R. T. (1984) Effects of adenosine dialdehyde on S-adenosylhomocysteine hydrolase and S-adenosylmethionine-dependent transmethylations in mouse L929 cells. Mol. Pharmacol. 25, 418–424.

    PubMed  CAS  Google Scholar 

  38. Hasobe, M., McKee, J. G. and Borchardt, R. T. (1989) Relationship between intracellular concentration of S-adenosylhomocysteine and inhibition of vaccinia virus replication and inhibition of murine L-929 cell growth. Antimicrob. Agents Chemother. 33, 828–834.

    PubMed  CAS  Google Scholar 

  39. De Clercq, E. and Holy, A. (1979) Antiviral activity of aliphatic nucleoside analogues: structure-function relationship. J. Med. Chem. 22, 510–513.

    PubMed  Google Scholar 

  40. De Clercq, E. and Holy, A. (1985) Alkyl esters of 3-adenin-9-yl-2-hydroxypropanoic acid: a new class of broad-spectrum antiviral agents. J. Med. Chem. 28, 282–287.

    PubMed  Google Scholar 

  41. Grant, J. and Lerner, L. M. (1979) Dialdehydes derived from adenine nucleosides as substrates and inhibitors of adenosine aminohydrolase. Biochemistry 18, 2838–2842.

    PubMed  CAS  Google Scholar 

  42. Chiang, P. K., Cantoni, G. L., Bader, J. P., Shannon, W. M., Thomas, H. J. and Montgomery, J. A. (1978) Adenosylhomocysteine hydrolase inhibitors: synthesis of 5′-deoxy-5′-(isobutylthio)-3-deazaadenosine and its effect on Rous sarcoma virus and Gross murine leukemia virus. Biochem. Biophys. Res. Commun. 82, 417–423.

    PubMed  CAS  Google Scholar 

  43. Bader, J. P., Brown, N. R., Chiang, P. K. and Cantoni, G. L. (1978) 3-Deazaadenosine, an inhibitor of adenosylhomocysteine hydrolase, inhibits reproduction of Rous sarcoma virus and transformation of chick embryo cells. Virology 89, 494–505.

    PubMed  CAS  Google Scholar 

  44. Bodner, A. J., Cantoni, G. L. and Chiang, P. K. (1981) Anti-viral activity of 3-deazaadenosine and 5′-deoxy-5′-isobutylthio-3-deazaadenosine (3-deaza-SIBA). Biochem. Biophys. Res. Commun. 98, 476–481.

    PubMed  CAS  Google Scholar 

  45. Kim, I. K., Zhang, C. Y., Chiang, P. K. and Cantoni, G. L. (1983) S-adenosylhomocysteine hydrolase from hamster liver: purification and kinetic properties. Arch. Biochem. Biophys. 226, 65–72.

    PubMed  CAS  Google Scholar 

  46. Guranowski, A., Montgomery, J. A., Cantoni, G. L. and Chiang, P. K. (1981) Adenosine analogues as substrates and inhibitors of S-adenosylhomocysteine hydrolase. Biochemistry 20, 110–115.

    PubMed  CAS  Google Scholar 

  47. Cools, M., and De Clercq, E. (1989) Correlation between the antiviral activity of acyclic and carbocyclic adenosine analogues in murine L929 cells and their inhibitory effect on L929 S-adenosylhomocysteine hydrolase. Biochem. Pharmacol. 38, 1061–1067.

    PubMed  CAS  Google Scholar 

  48. Matuszewska, B., and Borchardt, R. T. (1987) The role of nicotinamide adenine dinucleotide in the inhibition of bovine liver S-adenosylhomocysteine hydrolase by neplanocin A. J. Biol. Chem. 262, 265–268.

    PubMed  CAS  Google Scholar 

  49. Paisley, S. D., Wolfe, M. S. and Borchardt, R. T. (1989) Oxidation of neplanocin A to the corresponding 3′-keto derivative by S-adenosylhomocysteine hydrolase. J. Med. Chem. 32, 1415–1418.

    PubMed  CAS  Google Scholar 

  50. Snoeck, R., Andrei, G., Neyts, J., Schols, D., Cools, M., Balzarini, J., and De Clercq, E. (1993) Inhibitory activity of S-adenosylhomocysteine hydrolase inhibitors against human cytomegalovirus replication. Antiviral. Res. 21, 197–216.

    PubMed  CAS  Google Scholar 

  51. Huggins, J., Zhang, Z., and Bray, M. (1999) Antiviral drug therapy of filovirus infections: S-adenosyhomocysteine hydrolase inhibitors inhibit ebola virus in vitro and in a lethal mouse model. J. Infect. Dis. 179, S240–247.

    Google Scholar 

  52. de Clercq, E., Cools, M., Balzarini, J., Marquez, V. E., Borcherding, D. R., Borchardt, R. T., et al. (1989) Broad-spectrum antiviral activities of neplanocin A, 3-deazaneplanocin A, and their 5′-nor derivatives. Antimicrob. Agents Chemother. 33, 1291–1297.

    PubMed  Google Scholar 

  53. Saunders, P. P., Tan, M.-T., and Robins, R. K. (1985) Metabolism and action of neplanocin A in Chinese hamster ovary cells. Biochem. Pharmacol. 34, 2749–2754.

    PubMed  CAS  Google Scholar 

  54. Glazer, R. I. and Knode, M. C. (1984) Neplanocin A. A cyclopentenyl analog of adenosine with specificity for inhibiting RNA methylation. J. Biol. Chem. 259, 12,964–12,969.

    CAS  Google Scholar 

  55. Keller, B. T. and Borchardt, R. T. (1984) Metabolic conversion of neplanocinA to S-neplanocylmethionine by mouse L929 cells. Biochem. Biophys. Res. Commun. 120, 131–137.

    PubMed  CAS  Google Scholar 

  56. Keller, B. T., Clarke, R. S., Pegg, A. E. and Borchardt, R. T. (1985) Purification and characterizatio of some metabolic effects of S-neplanocylmethionine. Mol. Pharmacol. 28, 364–370.

    PubMed  CAS  Google Scholar 

  57. Inaba, M., Nagashima, K., Tsukagoshi, S., and Sakurai, Y. (1986) Biochemical mode of cytotoxic action of neplanocin A in L1210 leukemic cells. Cancer Res. 46, 1063–1067.

    PubMed  CAS  Google Scholar 

  58. Bennett, L. L., Allan, P. W. and Hill, D. L. (1968) Metabolic studies with carbocyclic analogs of purine nucleosides. Mol. Pharmacol. 4, 208–217.

    PubMed  CAS  Google Scholar 

  59. Ault-Riche, D. B., Lee, Y., Yuan, C. S., Hasobe, M., Wolfe, M. S., Borcherding, D. R. and Borchardt, R. T. (1993) Effects of 4′-modified analogs of aristeromycin on the metabolism of S-adenosyl-L-homocysteine in murine L929 cells. Mol. Pharm. 43, 989–997.

    CAS  Google Scholar 

  60. Hill, D. L., Straight, S., Allan, P. W. and Bennett, L. L. (1971) Inhibition of guanine metabolism of mammalian tumor cells by the carbocyclic analogue of adenosine. Mol. Pharmacol. 7, 375–380.

    PubMed  CAS  Google Scholar 

  61. Bennett, L. L. (1985) Inhibition of utilization of hypoxanthine and guanine in cells treated with the carbocyclic analog of adenosine. Phosphates of carbocyclic nucleoside analogs as inhibitors of hypoxanthine (guanine) phosphoribosyltransferase. Mol. Pharmacol. 27, 666–675.

    PubMed  CAS  Google Scholar 

  62. Bloch, A., Robins, M. J. and McCarthy, J. R. J. (1967) The role of the 5′-hydroxyl group of adenosine in determining substrate specificity for adenosine deaminase. J. Med. Chem. 10, 908–912.

    PubMed  CAS  Google Scholar 

  63. Glazer, R. I., Knode, M. C., Tseng, C. K., Haines, D. R. and Marquez, V. E. (1986) 3-Deazaneplanocin A: a new inhibitor of S-adenosylhomocysteine synthesis and its effects in human colon carcinoma cells. Biochem. Pharmacol. 35, 4523–4527.

    PubMed  CAS  Google Scholar 

  64. Tseng, C. K., Marquez, V. E., Fuller, R. W., Goldstein, B. M., Haines, D. R., McPherson, H., et al. (1989) Synthesis of 3-deazaneplanocin A, a powerful inhibitor of S-adenosylhomocysteine hydrolase with potent and selective in vitro and in vivo antiviral activities. J. Med. Chem. 32, 1442–1446.

    PubMed  CAS  Google Scholar 

  65. Montgomery, J. A., Clayton, S. J., Thomas, H. J., Shannon, W. M., Arnett, G., Bodner, A. J., et al. (1982) Carbocyclic analogue of 3-deazaadenosine: a novel antiviral agent using S-adenosylhomocysteine hydrolase as a pharmacological target. J. Med. Chem. 25, 626–629.

    PubMed  CAS  Google Scholar 

  66. Hasobe, M., McKee, J. G., Borcherding, D. R. and Borchardt, R. T. (1987) 9-(trans-2′, trans-3′-dihydroxycyclopent-4′-enyl)-adenine and-3-deazaadenine: analogs of neplanocin A which retain potent antiviral activity but exhibit reduced cytotoxicity. Antimicrob. Agents Chemother. 31, 1849–1851.

    PubMed  CAS  Google Scholar 

  67. Hasobe, M., McKee, J. G., Borcherding, D. R., Keller, B. T. and Borchardt, R.T. (1988) Effects of 9-(trans-2′, trans-3′-dihydroxycyclopent-4′-enyl)-adenine and 3-deazaadenine on the metabolism of S-adenosylhomocysteine in mouse L929. Cells. Mol. Pharmacol. 33, 713–720.

    CAS  Google Scholar 

  68. Narayanan, S. R., Keller, B. T., Borcherding, D. R., Scholtz, S. A. and Borchardt, R. T. (1988) 9-(trans-2′, trans-3′-dihydroxycyclopent-4′-enyl) derivatives of adenine and 3-deazaadenine: potent inhibitors of bovine liver S-adenosylhomocysteine hyrolase. J. Med. Chem. 31, 500–503.

    PubMed  CAS  Google Scholar 

  69. Perry, K. L., Watkins, K. P. and Agabian, N. (1987) Trypanosome mRNAs have unusual “cap 4” structures acquired by addition of a spliced leader. Proc. Natl. Acad. Sci. 84, 8190–8194.

    PubMed  CAS  Google Scholar 

  70. Sutton, R. and Boothroyd, J. (1988) The cap of both Miniexon-derived RNA and mRNA of Trypanosomes is 7-Methylguanosine. Mol. Cell. Biol. 8, 494–496.

    PubMed  CAS  Google Scholar 

  71. Freistadt, M., Cross, G., and Robertson, H. (1988) Discontinuously synthesized mRNA from Trypanosoma brucei contains the highly methylated 5′-cap structure, m7GpppA (A*C(2′O)mU*A. J. Biol. Chem. 263, 15071–15075.

    PubMed  CAS  Google Scholar 

  72. Murphy, W. J., Watkins, K. P. and Agabian, N. (1986) Identification of a novel Y branch structure as an intermediate in Trypanosome mRNA processing: evidence for trans splicing. Cell 47, 517–525.

    PubMed  CAS  Google Scholar 

  73. Sutton, R. E. and Boothroyd, J. C. (1986) Evidence for trans splicing in trypanosomes. Cell 47, 527–535.

    PubMed  CAS  Google Scholar 

  74. Ullu, E. and Tschudi, C. (1991) Trans splicing in trypanosomes requires methylation of the 5′ end of the spliced leader RNA. Proc. Natl. Acad. Sci. 35, 10074–10078.

    Google Scholar 

  75. Bitonti, A. J., Baumann, R. J., Jarvi, E. T., McCarthy, J. R. and McCann, P. P. (1990) Antimalarial activity of a 4′,5′-unsaturated 5′-fluoroadenosine mechanism-based inhibitor of S-adenosyl-L-homocysteine hydrolase. Biochem. Pharmacol. 40, 601–606.

    PubMed  CAS  Google Scholar 

  76. Avila, J. L., Avila, A., Polegre, M. A. and Marquez, V. E. (1997) Specific inhibitory effect of 3-deazaneplanocin A against several Leishmania mexicana and L. braziliensis strains. Am. J. Trop. Med. Hyg. 57, 407–412.

    PubMed  CAS  Google Scholar 

  77. Yuan, C. S., Yeh, J., Liu, S., and Borchardt, R. T. (1993) Mechanism of inactivation of S-adenosylhomocysteine hydrolase by (Z)-4′,5′-didehydro-5′-fluoroadenosine. J. Biol. Chem. 268, 17030–17037.

    PubMed  CAS  Google Scholar 

  78. Turner, M. A., Dole, K., Yuan, C.-S., Hershfield, M. S., Borchardt, R. T. and Howell, P. L. (1997) Crystallization and preliminary X-ray analysis of human placental S-adenosylhomocysteine hydrolase. Acta Cryst. D53, 339–341.

    CAS  Google Scholar 

  79. Turner, M. A., Yuan, C.-S., Borchardt, R. T., Hershfield, M. S., Smith, G. D. and Howell, P. L. (1998) Structure determination of selenomethionyl S-adenosylhomocysteine hydrolase using data at a single wavelength. Nat. Struct. Biol. 5, 369–376.

    PubMed  CAS  Google Scholar 

  80. Smith, G. D., Nagar, B., Rini, J. M., Hauptman, H. A. and Blessing, R. H. (1998) The use of SnB to determine an anomalous scattering substructure. Acta Cryst. D54, 799–804.

    CAS  Google Scholar 

  81. Weeks, C. M. and Miller, R. (1999) The design and implementation of SnB v2.0. J. Appl. Cryst. 32, 120–124.

    CAS  Google Scholar 

  82. Ramakrishnan, V. and Biou, V. (1997) Treatment of multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. methods Enzymol. 276, 538–557.

    Article  PubMed  CAS  Google Scholar 

  83. Kleijwegt, G. J. and Jones, T. A. (1997) Detecting folding motifs and similarities in protein structures. Methods Enzymol. 277, 525–545.

    Google Scholar 

  84. Lamzin, V. S., Aleshin, A. E., Strokopytov, B. V., Yukhnevich, M. G., Popov, V. O., Harutyunyan, E. H. and Wilson, K. S. (1992) Crystal structure of NAD-dependent formate dehydrogenase. Eur. J. Biochem. 206 441–452.

    PubMed  CAS  Google Scholar 

  85. Lesk, A. M. (1995) NAD-binding domains of dehydrogenases. Curr. Op. Struct. Biol. 5, 775–783.

    CAS  Google Scholar 

  86. Buehner, M., Ford, G. C., Moras, D., Olsen, K. W. and Rossmann, M. G. (1973) D-Glyceraldehyde-3-phosphate dehydrogenase: three-dimensional structure and evolutionary significance. Proc. Natl. Acad. Sci. 70, 3052–3054.

    PubMed  CAS  Google Scholar 

  87. Richardson, J. S. (1981) The anatomy and taxonomy of protein structure. Advances in Protein Chemistry 34, 167–339.

    PubMed  CAS  Google Scholar 

  88. Degano, M., Gopaul, D. N., Scapin, G., Schramm, V. L. and Sacchettini, J. C. (1996) Three-dimensional structure of the inosine-uridine nucleoside N-ribohydrolase from Crithidia fasciculata. Biochemistry 35, 5971–5981.

    PubMed  CAS  Google Scholar 

  89. Degano, M., Almo, S. C., Sacchettini, J. C. and Schramm, V. L. (1998) Trypanosomal Nucleoside Hydrolase. A Novel Mechanism from the Structure with a Transition-State Inhibitor. Biochemistry 37, 6277–6285.

    PubMed  CAS  Google Scholar 

  90. Abeles, R. H., Fish, S., and Lapinskas, B. (1982) S-Adenosylhomocysteinase: Mechanism of inactivation by 2′-deoxyadenosine and interaction with other nucleoside. Biochemistry 21, 5557–5562.

    PubMed  CAS  Google Scholar 

  91. Cornell, K. A. and Riscoe, M. K. (1998) Cloning and expression of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase: Identification of the pfs gene product. Biochem. Biophys. Acta. 1396, 8–14.

    PubMed  CAS  Google Scholar 

  92. Allart, B., Gatel, M., Guillerm, D., and Guillerm, G. (1998) The catalytic mechanism of adenosylhomocysteine/methylthioadenosine nucleosidase from Escherichia coli. Eur. J. Biochem. 256, 155–162.

    PubMed  CAS  Google Scholar 

  93. Ault-Riche, D. B., Yuan, C. S. and Borchardt, R. T. (1994) A single mutation at lysine 426 of human placental S-adenosylhomocysteine hydrolase inactivates the enzyme. J. Biol. Chem. 269, 31,472–31,478.

    CAS  Google Scholar 

  94. Porcelli, M., Cacciapuoti, G., Fusco, S., Iacomino, G., Gambacorta, A., De Rosa, M., and Zappia, V. (1993) S-adenosylhomocysteine hydrolase from the thermophilic archaeon Sulfolobus solfataricus: purification, physicochemical and immunoglobulin properties. Biochim. Biophys. Acta 1164, 179–188.

    PubMed  CAS  Google Scholar 

  95. Procelli, M., Cacciapuoti, G., Fusco, S., Bertoldo, C., De Rosa, M., and Zappia, V. (1996) Cloning and sequencing of the gene coding for S-adenosylhomocysteine hydrolase in the thermophilic archaeon Sulfolobus solfataricus. Gene 177, 17–22.

    Google Scholar 

  96. Porter, D. J. T. and Boyd, F. L. (1991) Mechanism of bovine liver S-adenosylhomocysteine hydrolase: Steady-state and presteady-state kinetic analysis. J. Biol. Chem. 266, 21,616–21,625.

    CAS  Google Scholar 

  97. Porter, D. J. T. and Boyd, F. L. (1992) Reduced S-adenosylhomocysteine hydrolase: Kinetics and thermodynamics for binding of 3′-ketoadenosine, adenosine and adenine. J. Biol. Chem. 267, 3205–3213.

    PubMed  CAS  Google Scholar 

  98. Yuan, C.-S., Yeh, J., Squier, T. C., Rawitch, A., and Borchardt, R. T. (1993) Ligand-dependent changes in intrinsic fluorescence of S-adenosylhomocysteine hydrolase: implications for the mechanism of inhibitor-induced inhibition. Biochemistry 32, 10414–10422.

    PubMed  CAS  Google Scholar 

  99. Hu, Y., Komoto, J., Huang, Y., Gomi, T., Ogawa, H., Takata, Y., Fujioka, M., and Takusagawa, F. (1999) Crystal structure of S-adenosylhomocysteine hydrolase from rat liver. Biochemistry 38, 8323–8333.

    PubMed  CAS  Google Scholar 

  100. Merta, A., Aksamit, R. R., Kasir, J., and Cantoni, G. L. (1995) The gene and pseudogenes of rat S-dadeosyl-L-homocysteine hydrolase. Eur. J. Biochem. 229, 575–582.

    PubMed  CAS  Google Scholar 

  101. Coulter-Karis, D. E. and Hershfield, M. S. (1989) Sequence of full-length cDNA for human S-adenosylhomocysteine hydrolase. Ann. Hum. Gen. 53, 169–175.

    CAS  Google Scholar 

  102. De Clercq, E., and Cools, M. (1985) Antiviral potency of adenosine analogues: correlation with inhibition of S-adenosylhomocysteine hydrolase. Biochem. Biophys. Res. Commun. 129, 306–311.

    PubMed  Google Scholar 

  103. Patel-Thombre, U., and Borchardt, R. T. (1985) Adenine nucleoside dialdehydes: potent inhibitors of bovine liver S-adenosylhomocysteine hydrolase. Biochemistry 24, 1130–1136.

    PubMed  CAS  Google Scholar 

  104. Houston, D. M., Dolence, E. K., Keller, B. T., Patel-Thombre, U., and Borchardt, R. T. (1985) Potential inhibitors of S-adenosylmethionine-dopendent methyltransferases, 9.2′,3′-dialdehyde derivatives of carbocyclic purine nucleotides as inhibitors of S-adenosylhomocysteine hydrolase. J. Med. Chem. 28, 471–477.

    PubMed  CAS  Google Scholar 

  105. Wolfe, M. S., Lee, Y., Bartlett, W. J., Borcherding, D. R. and Borchardt, R. T. (1992) 4′-modified analogues of aristeromycin and neplanocin A: synthesis and inhibitory activity toward S-adenosyl-L-homocysteine hydrolase. J. Med. Chem. 35, 1782–1791.

    PubMed  CAS  Google Scholar 

  106. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680.

    PubMed  CAS  Google Scholar 

  107. Yin, D., Yang, X., Hu, Y. Kucera, K., Schowen, R. L., Borchardt, R. T. and Squier, T. C. (2000) Substrate binding stabilizes S-Adenosylhomocysteine hydrolase in a closed conformation. Biochemistry 39, 9811–9818.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, M.A., Yang, X., Yin, D. et al. Structure and function of S-adenosylhomocysteine hydrolase. Cell Biochem Biophys 33, 101–125 (2000). https://doi.org/10.1385/CBB:33:2:101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:33:2:101

Index Entries

Navigation