Skip to main content
Log in

Polyunsaturated fatty acid regulation of gene expression

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Polyunsaturated fatty acids (PUFAs), specifically the n-3 and n-6 series, play a key role in the progression or prevention of human diseases such as obesity, diabetes, cancer, neurological and heart disease, mainly by affecting cellular membrane lipid composition, metabolism, signal-transduction pathways, and by direct control of gene expression. PUFAs show regulation of gene expression in several tissues, including brain, liver, heart, and adipose. Most recently, research has focused on identifying the mechanisms by which PUFAs regulate lipogenic gene expression. Research to date indicates that PUFA-mediated regulation of the genetic expression and proteolytic maturation of a group of transcription factors termed sterol regulatory element binding proteins (SREBPs) accounts for the suppression of hepatic lipogenic gene expression. However, our recent studies on the transcriptional regulation of the stearoyl-coenzyme A (CoA) desaturase gene, encoding a key enzyme in the cellular synthesis of monounsaturated fatty acids from saturated fatty acids indicates that PUFA can suppress gene transcription by a mechanism independent of SREBP maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bing R., Thelen A. P., and Jump D. B., (1996) Peroxisome proliferator-activated receptor α inhibits hepatic S14 gene transcription. J. Biol. Chem. 271, 17,167–17,173.

    Google Scholar 

  • Bing R., Thelen A. P., Peters J. M., Gonzalez F. J., and Jump D. B., (1997) Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S14 gene expression does not require peroxisome proliferator-activated receptor α. J. Biol. Chem. 272, 26,827–26,832.

    Google Scholar 

  • Blake W. L. and Clarke S. D. (1990) Suppression of rat hepatic fatty acid synthase and S14 gene transcription by dietary polyunsaturated fat. J. Nutr. 120, 1727–1729.

    PubMed  CAS  Google Scholar 

  • Brown M. S. and Goldstein J. L. (1977) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340.

    Article  Google Scholar 

  • Brun T., Assimacopoulos-Jeannet F., Crokey B. E., and Prentki M. (1997) Long-chain fatty acids inhibit acetyl-CoA carboxylase gene expression in pancreatic beta-cell line INS-1. Diabetes 46, 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Clarke S. D., Turini M., and Jump D. B. (1997) Polyunsaturated fatty acids regulate lipogenic and peroxisomal gene expression by independent mechanisms. Prostaglandins Leukot. Essent. Fatty Acids 57, 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Cho H. P., Nakamura M. T., and Clarke S. D. (1999) Cloning, expression, and nutritional regulation of the mammalian delta-6 desaturase. J. Biol. Chem. 274, 471–477.

    Article  PubMed  CAS  Google Scholar 

  • Deglon N., Wilson A., Desponds C., Laurent P., Bron C., and Fasel N. (1995) Fatty acids regulate Thy-1 antigen mRNA stability in T lymphocyte precursors. Eur. J. Biochem. 231, 687–696.

    Article  PubMed  CAS  Google Scholar 

  • DeWille J. W. and Farmer S. J. (1992) Postnatal dietary fat influences mRNAS involved in myelination. Dev. Neurosci. 14, 61–68.

    PubMed  CAS  Google Scholar 

  • DeWille J. W. and Farmer S. J. (1993) Linoleic acid controls neonatal tissue-specific stearoyl-CoA desaturase mRNA levels. Biochim. Biophys. Acta. 1170, 291–295.

    PubMed  CAS  Google Scholar 

  • Finstad H. S., Kolset S. O., Holme J. A., Wiger R., Ferrants A. O., Blomhoff R., and Drevon C. A. (1994) Effect of n-3 and n-6 fatty acids on proliferation and differentiation of promyelocytic leukemic HL-60 cells. Blood 84, 3799–3809.

    PubMed  CAS  Google Scholar 

  • Garbay B., Boiron-Sarqueil F., Shy M., Chbihi T., Jiang H., Kamholz J., and Cassagne C. (1998) Regulation of oleoyl-CoAsynthesis in the peripheral nervous system: demonstration of a link with myelin synthesis. J. Neurochem. 71, 1719–1726.

    Article  PubMed  CAS  Google Scholar 

  • Gottlicher M., Widmark E., Li Q. and Gustafsson J. A. (1992) Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 89, 4653–465.

    Article  PubMed  CAS  Google Scholar 

  • Horton J. D., Shimomura L., Brown M. S., Hammer R. E., Goldstein J. L., and Shimano H. (1998a). Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overexpressing sterol regulatory element binding protein. J. Clin. Invest. 101, 2331–2339.

    PubMed  CAS  Google Scholar 

  • Horton J. D., Bashmakov Y., Shimomura I. and Shimano H. (1998b) Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. USA 95, 5987–5992.

    Article  PubMed  CAS  Google Scholar 

  • Hua X., Yokoyama C., Wu J., Briggs M. R., Brown M. S., Goldstein J. L., and Wang X. (1993) SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl. Acad. Sci. USA 90, 11,603–11,607.

    CAS  Google Scholar 

  • Jones B., Maher M. A., Banz W. J., Zemel M. B., Whelan J., Smith P., and Moustaid N. (1996) Adipose tissue stearoyl-CoA desaturase mRNA is increased by obesity and decreased by polyunsaturated fatty acids. Am. J. Physiol. 34, E44-E49.

    Google Scholar 

  • Jump D. B., Clarke S. D., Thelen A., and Liimatta M. (1994) Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J. Lipid Res. 35, 1076–1084.

    PubMed  CAS  Google Scholar 

  • Jump D. B., Ren B., Clarke S. D., and Thelen A. (1995) Effects of fatty acids on hepatic gene expression. Prostaglandins Leukot. Essent. Fatty Acids 52, 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Kim J. H., Takahashi M., and Ezaki O. (1999) Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. J. Biol. Chem. 274, 25,892–25,898.

    CAS  Google Scholar 

  • Korn B. S., Shimomura I., Bashmakov Y., Hammer R. E., Horton J. D., Goldstein J. L., and Brown M. S. (1998) Blunted feed back suppression of SREBP processing by dietary cholesterol in transgenic mice expressing sterol-resistant SCAP (D443N). J. Clin. Invest. 102, 2050–2060.

    Article  PubMed  CAS  Google Scholar 

  • Long S. D. and Pekala P. H. (1996) Regulation of GLUT4 gene expression by arachidonic acid. J. Biol. Chem. 271, 1138–1144.

    Article  PubMed  CAS  Google Scholar 

  • Marbois B. N., Ajie, H. O., Korsak, R. A., Sensharma D. K., and Edmond J. (1992) The origin of palmitic acid in brain of the developing rat. Lipids 27, 587–592.

    Article  PubMed  CAS  Google Scholar 

  • Mater M. K., Thelen A., Pan D. and Jump D. B. (1999a) Arachidonic acid and PGE2 regulation of hepatic lipogenic gene expression. J. Lipid Res. 40, 1045–1052.

    PubMed  CAS  Google Scholar 

  • Mater M. K., Thelen A., Pan D., and Jump D. B. (1999b). Sterol response element-binding protein 1c (SREBP1c) is involved in polyunsaturated fatty acid suppression of hepatic S14 gene transcription. J. Biol. Chem. 274, 32,725–32,732.

    Article  CAS  Google Scholar 

  • Miller C. W. and Ntambi J. M. (1996) Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc. Natl. Acad. Sci. USA 93, 9443–9448.

    Article  PubMed  CAS  Google Scholar 

  • Niot I., Poirier H., and Besnard P. (1997) Regulation of gene expression by fatty acids: special reference to fatty acid-binding protein (FABP). Biochimie 79, 129–133.

    Article  PubMed  CAS  Google Scholar 

  • Ntambi J. M. (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J. Lipid Res. 40, 1549–1558

    PubMed  CAS  Google Scholar 

  • Sessler A. M., Kaur N., Palta J. P., and Ntambi J. M. (1996) Regulation of stearoyl-CoA desaturase 1 mRNA stability by polyunsaturated fatty acids in 3T3-L1 adipocytes. J. Biol. Chem. 271, 29,854–29,858.

    CAS  Google Scholar 

  • Sessler A. M. and Ntambi J. M. (1998) Polyunsaturated fatty acid regulation of gene expression. J. Nutr. 128, 923–926.

    PubMed  CAS  Google Scholar 

  • Shimomura I., Shimano H., Korn B. S., Bashmakov Y., and Horton J. D. (1998) Nuclear sterol regulatory element-binding proteins activate genes responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver. J. Biol. Chem. 273, 35,299–35,306.

    Article  CAS  Google Scholar 

  • Tabor D. E., Kim J. B., Spiegelman B. M. and Edwards P. A. (1998) Transcriptional activation of the stearoyl-CoA desaturase-2 gene by sterol regulatory element-binding protein/adipocyte determination and differentiation factor 1. J. Biol. Chem. 273, 22,052–22,058.

    Article  CAS  Google Scholar 

  • Tabor D. E., Kim J. B., Spiegelman B. M., and Edwards P. A. (1999) Identification of conserved cis-elements and transcription factors required for sterol-regulated transcription of stearoyl-CoA desaturase 1 and 2. J. Biol. Chem. 274, 20,603–20,610.

    CAS  Google Scholar 

  • Tebbey P. W. and Buttke T. M. (1993) Independent arachidonicacid-mediated gene regulatory pathways in lymphocytes. Biochem. Biophys. Res. Commun. 194, 862–886.

    Article  PubMed  CAS  Google Scholar 

  • Tebbey P. W., McGowan K. M., Stephens J. M., Buttke T. M., and Pekala P. H. (1994) Arachidonic acid down-regulates the insulin-dependent glucose transporter gene (GLUT4) in 3T3-L1 adipocytes by inhibiting transcription and enhancing mRNA turnover. J. Biol. Chem. 269(1), 639–644.

    PubMed  CAS  Google Scholar 

  • Wang X., Sato R., Brown M. S., Hua X., and J. L. Goldstein. (1994) SREBP-1, a Membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77, 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Waters K. M., Miller C. W., and Ntambi J. M. (1997) Localization of polyunsaturated fatty acid response region in stearoyl-CoA desaturase gene 1. Bioch. Biophys. Acta 1349, 33–40.

    CAS  Google Scholar 

  • Worgall T. S., Sturley S. L., Soe T., Osborne T. F., and Deckelbaum R. J. (1998) Polyunsaturated fatty acids decrease expression of promoters with sterol regulatory elements by decreasing levels of sterol regulatory element-binding protein. J. Biol. Chem. 273, 25,537–25,540.

    Article  CAS  Google Scholar 

  • Xu J., Nakamura M. N., Cho H. P., and Clarke S. (1999) Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. J. Biol. Chem. 274, 23,577–23,583.

    CAS  Google Scholar 

  • Yahagi N., Shimano H., Hasty A. H., Kudo M. A., Okazaki H., Tamura T., et al. (1999) A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J. Biol. Chem. 274, 35,840–35,844.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Ntambi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntambi, J.M., Bené, H. Polyunsaturated fatty acid regulation of gene expression. J Mol Neurosci 16, 273–278 (2001). https://doi.org/10.1385/JMN:16:2-3:273

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:2-3:273

Index Entries

Navigation