Skip to main content
Log in

Peripheral sensory neurons survive in the absence of α- and γ-synucleins

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Physiological functions of α-synuclein, a protein implicated in certain types of neurodegeneration, and two other members of the same family, β-synuclein and γ-synuclein, are not clearly understood. It has been suggested that synucleins are involved in intracellular processes associated with survival of neurons and their response to stress, and that changes of synuclein ratio might have deteriorating effects on neurons. In wild-type mice, sensory neurons of the peripheral nervous system express α-synuclein and notably high levels of γ-synuclein, but targeted inactivation of either of these genes has no effect on these neurons. Here we produced double, α-synuclein/γ-synuclein null mutant mice, which develop normally, are fertile, and show no obvious signs of pathology in adulthood. Survival of α/γ-synuclein-deficient peripheral sensory neurons in vivo and in primary tissue culture is indistinguishable from survival of wild-type neurons. The absence of two synucleins does not lead to expression in sensory neurons of the third member of the family, β-synuclein. Therefore, our results demonstrate that neurons with normally high levels of synuclein(s) can develop and survive normally in the absence of any of these proteins. This suggests that other intraneuronal mechanisms and pathways effectively compensate the loss of synuclein function in null mutant animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeliovich A., Schmitz Y., Farinas I., Choi-Lundberg D., Ho W. H., Castillo P. E., et al. (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Buchman V. L., Hunter H. J., Pinon L. G., Thompson J., Privalova E. M., Ninkina N. N., and Davies A. M. (1998) Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J. Neurosci. 18, 9335–9341.

    PubMed  CAS  Google Scholar 

  • Cabin D. E., Shimazu K., Murphy D., Cole N. B., Gottschalk W., McIlwain K. L., et al. (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J. Neurosci. 22, 8797–8807.

    PubMed  CAS  Google Scholar 

  • Cookson M. R. (2003) Pathways to parkinsonism. Neuron 37, 7–10.

    Article  PubMed  CAS  Google Scholar 

  • da Costa C. A., Masliah E., and Checler F. (2003) Beta-synuclein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxy-dopamine-induced caspase 3 activation: Cross-talk with alpha-synuclein and implication for Parkinson’s disease. J. Biol. Chem. 278, 37,330–37,335.

    Article  CAS  Google Scholar 

  • Dev K. K., Hofele K., Barbieri S., Buchman V. L., and van der Putten H. (2003) Part II: alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology 45, 14–44.

    Article  PubMed  CAS  Google Scholar 

  • Dickson D. W. (2001) Alpha-synuclein and the Lewy body disorders. Curr. Opin. Neurol. 14, 423–432.

    Article  PubMed  CAS  Google Scholar 

  • Ding T. T., Lee S. J., Rochet J. C., and Lansbury P. T. Jr. (2002) Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41, 10,209–10,217.

    Article  CAS  Google Scholar 

  • Duda J. E., Shah U., Arnold S. E., Lee V. M., and Trojanowski J. Q. (1999) The expression of alpha-, beta-, and gamma-synucleins in olfactory mucosa from patients with and without neurodegenerative diseases. Exp. Neurol. 160, 515–522.

    Article  PubMed  CAS  Google Scholar 

  • Galvin J. E., Giasson B., Hurtig H. I., Lee V. M., and Trojanowski J. Q. (2000) Neurodegeneration with brain iron accumulation, type 1 is characterized by alpha-, beta-, and gamma-synuclein neuropathology. Am. J. Pathol. 157, 361–368.

    PubMed  CAS  Google Scholar 

  • Galvin J. E., Lee V. M., and Trojanowski J. Q. (2001) Synucleinopathies: clinical and pathological implications. Arch. Neurol. 58, 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Galvin J. E., Uryu K., Lee V. M., and Trojanowski J. Q. (1999) Axon pathology in Parkinson’s disease and lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc. Natl. Acad. Sci. U. S. A. 96, 13450–13455.

    Article  PubMed  CAS  Google Scholar 

  • Giasson B. I., Duda J. E., Forman M. S., Lee V. M., and Trojanowski J. Q. (2001) Prominent perikaryal expression of alpha- and beta-synuclein in neurons of dorsal root ganglion and in medullary neurons. Exp. Neurol. 172, 354–362.

    Article  PubMed  CAS  Google Scholar 

  • Goedert M. (2001) Parkinson’s disease and other alpha-synucleinopathies. Clin. Chem. Lab. Med. 39, 308–312.

    Article  PubMed  CAS  Google Scholar 

  • Gosavi N., Lee H. J., Lee J. S., Patel S., and Lee S. J. (2002) Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J. Biol. Chem. 277, 48,984–48,992.

    Article  CAS  Google Scholar 

  • Hashimoto M., Rockenstein E., Mante M., Mallory M., and Masliah E. (2001) Beta-synuclein inhibits alpha-synuclein aggregation: A possible role as an anti-parkinsonian factor. Neuron 32, 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Hsu L. J., Sagara Y., Arroyo A., Rockenstein E., Sisk A., Mallory M., et al. (2000) Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol. 157, 401–410.

    PubMed  CAS  Google Scholar 

  • Jakes R., Spillantini M. G., and Goedert M. (1994) Identification of two distinct synucleins from human brain. FEBS Lett. 345, 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Jakowec M. W., Donaldson D. M., Barba J., and Petzinger G. M. (2001) Postnatal expression of alpha-synuclein protein in the rodent substantia nigra and striatum. Dev. Neurosci. 23, 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Ji H., Liu Y. E., Jia T., Wang M., Liu J., Xiao G., et al. (1997) Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res. 57, 759–764.

    PubMed  CAS  Google Scholar 

  • Kruger R., Eberhardt O., Riess O., and Schulz J. B. (2002) Parkinson’s disease: One biochemical pathway to fit all genes? Trends Mol. Med. 8, 236–240.

    Article  PubMed  CAS  Google Scholar 

  • Kruger R., Kuhn W., Muller T., Woitalla D., Graeber M., Kosel S., et al. (1998) Ala30pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108.

    Article  PubMed  CAS  Google Scholar 

  • Lashuel H. A., Petre B. M., Wall J., Simon M., Nowak R. J., Walz T., and Lansbury P. T. Jr. (2002) Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089–1102.

    Article  PubMed  CAS  Google Scholar 

  • Lavedan C., Leroy E., Dehejia A., Buchholtz S., Dutra A., Nussbaum R. L., and Polymeropoulos M. H. (1998) Identification, localization and characterization of the human gamma-synuclein gene. Hum. Genet. 103, 106–112.

    Article  PubMed  CAS  Google Scholar 

  • Lee M., Hyun D., Halliwell B., and Jenner P. (2001) Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult. J. Neurochem. 76, 998–1009.

    Article  PubMed  CAS  Google Scholar 

  • Lee S. J. (2003) Alpha-synuclein aggregation: a link between mitochondrial defects and Parkinson’s disease? Antioxid. Redox Signal 5, 337–348.

    Article  PubMed  CAS  Google Scholar 

  • Lehmensiek V., Tan E. M., Schwarz J., and Storch A. (2002) Expression of mutant alpha-synucleins enhances dopamine transporter-mediated MPP+ toxicity in vitro. Neuroreport 13, 1279–1283.

    Article  PubMed  CAS  Google Scholar 

  • Li J. Y., Henning Jensen P., and Dahlstrom A. (2002) Differential localization of alpha-, beta- and gamma-synucleins in the rat CNS. Neuroscience 113, 463–478.

    Article  PubMed  CAS  Google Scholar 

  • Lotharius J. and Brundin P. (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3, 932–942.

    Article  PubMed  CAS  Google Scholar 

  • Mori F., Hayashi S., Yamagishi S., Yoshimoto M., Yagihashi S., Takahashi H., and Wakabayashi K. (2002) Pick’s disease: alpha- and beta-synuclein-immunoreactive pick bodies in the dentate gyrus. Acta Neuropathol. (Berl.) 104, 455–461.

    CAS  Google Scholar 

  • Nakajo S., Tsukada K., Omata K., Nakamura Y., and Nakaya K. (1993) A new brain-specific 14-kDa protein is a phosphoprotein. Its complete amino acid sequence and evidence for phosphorylation. Eur. J. Biochem. 217, 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Ninkina N., Papachroni K., Robertson D. C., Schmidt O., Delaney L., O’Neill F., et al. (2003) Neurons expressing the highest levels of gamma-synuclein are unaffected by targeted inactivation of the gene. Mol. Cell. Biol. 23, 8233–8245.

    Article  PubMed  CAS  Google Scholar 

  • Ninkina N. N., Privalova E. M., Pinon L. G., Davies A. M., and Buchman V. L. (1999) Developmentally regulated expression of persyn, a member of the synuclein family, in skin. Exp. Cell Res. 246, 308–311.

    Article  PubMed  CAS  Google Scholar 

  • Ostrerova N., Petrucelli L., Farrer M., Mehta N., Choi P., Hardy J., and Wolozin B. (1999) Alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J. Neurosci. 19, 5782–5791.

    PubMed  CAS  Google Scholar 

  • Park J. Y. and Lansbury P. T. Jr. (2003) Beta-synuclein inhibits formation of alpha-synuclein protofibrils: a possible therapeutic strategy against Parkinson’s disease. Biochemistry 42, 3696–3700.

    Article  PubMed  CAS  Google Scholar 

  • Petrucelli L., O’Farrell C., Lockhart P. J., Baptista M., Kehoe K., Vink L., et al. (2002) Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36, 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  • Pinon L. G., Middleton G., and Davies A. M. (1997) Bcl-2 is required for cranial sensory neuron survival at defined stages of embryonic development. Development 124, 4173–4178.

    PubMed  CAS  Google Scholar 

  • Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Rockenstein E., Hansen L. A., Mallory M., Trojanowski J. Q., Galasko D., and Masliah E. (2001) Altered expression of the synuclein family mRNA in Lewy body and Alzheimer’s disease. Brain Res. 914, 48–56.

    Article  PubMed  CAS  Google Scholar 

  • Saha A. R., Ninkina N. N., Hanger D. P., Anderton B. H., Davies A. M., and Buchman V. L. (2000) Induction of neuronal death by alpha-synuclein. Eur. J. Neurosci. 12, 3073–3077.

    Article  PubMed  CAS  Google Scholar 

  • Surgucheva I., McMahan B., Ahmed F., Tomarev S., Wax M. B., and Surguchov A. (2002) Synucleins in glaucoma: Implication of gamma-synuclein in glaucomatous alterations in the optic nerve. J. Neurosci. Res. 68, 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Surguchov A., McMahan B., Masliah E., and Surgucheva I. (2001) Synucleins in ocular tissues. J. Neurosci. Res. 65, 68–77.

    Article  PubMed  CAS  Google Scholar 

  • Tiunova A. A., Anokhin K. V., Saha A. R., Schmidt O., Hanger D. P., Anderton B. H., et al. (2000) Chicken synucleins: cloning and expression in the developing embryo. Mech. Dev. 99, 195–198.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski J. Q. and Lee V. M. (2002) Parkinson’s disease and related synucleinopathies are a new class of nervous system amyloidoses. Neurotoxicology 23, 457–460.

    Article  PubMed  CAS  Google Scholar 

  • Uversky V. N., Li J., Souillac P., Millett I. S., Doniach S., Jakes R., et al. (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J. Biol. Chem. 277, 11,970–11,978.

    Article  CAS  Google Scholar 

  • Volles M. J. and Lansbury P. T. Jr. (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41, 4595–4602.

    Article  PubMed  CAS  Google Scholar 

  • Volles M. J. and Lansbury P. T. Jr. (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 42, 7871–7878.

    Article  PubMed  CAS  Google Scholar 

  • Volles M. J., Lee S. J., Rochet J. C., Shtilerman M. D., Ding T. T., Kessler J. C., and Lansbury P. T. Jr. (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40, 7812–7819.

    Article  PubMed  CAS  Google Scholar 

  • Welch K. and Yuan J. (2003) Alpha-synuclein oligomerization: a role for lipids? Trends Neurosci. 26, 517–519.

    Article  PubMed  CAS  Google Scholar 

  • Windisch M., Hutter-Paier B., Rockenstein E., Hashimoto M., Mallory M., and Masliah E. (2002) Development of a new treatment for Alzheimer’s disease and Parkinson’s disease using anti-aggregatory beta-synuclein-derived peptides. J. Mol. Neurosci. 19, 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Wood S. J., Wypych J., Steavenson S., Louis J. C., Citron M., and Biere A. L. (1999) Alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J. Biol. Chem. 274, 19,509–19,512.

    CAS  Google Scholar 

  • Zhu M., Li J., and Fink A. L. (2003) The association of alpha-synuclein with membranes affects bilayer structure, stability and fibril formation. J. Biol. Chem. 278, 40,186–40,197.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir L. Buchman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papachroni, K., Ninkina, N., Wanless, J. et al. Peripheral sensory neurons survive in the absence of α- and γ-synucleins. J Mol Neurosci 25, 157–164 (2005). https://doi.org/10.1385/JMN:25:2:157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:25:2:157

Index Entries

Navigation