Skip to main content
Log in

Light and darkness regulate melanopsin in the retinal ganglion cells of the albino wistar rat

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Circadian rhythms are daily adjusted to the environmental day/night cycle by photic input via the retinohypothalamic tract (RHT). Recent studies indicate that melanopsin, a newly identified opsin-like molecule, is involved in the light responsiveness of retinal ganglion cells (RGCs) constituting the RHT. In the present study, we examined the expression of melanopsin at the mRNA and protein level during a day/night cycle and during prolonged periods of light and darkness in the retina of albino Wistar rats. We observed a diurnal change in melanopsin, with mRNA level being highest at early subjective night and protein level highest at late subjective day. Prolonged exposure to darkness significantly increased melanopsin mRNA level as early as the first day, and the expression continued to increase during 5 d in darkness. The decrease in mRNA level during exposure to constant light was slower. After 48 h of light, the melanopsin mRNA level was significantly reduced, and an almost undetectable level was found after 5 d. The induction of melanopsin by darkness was even more pronounced if darkness was preceded by light suppression for 5 d. By use of immunohistochemistry, we showed that darkness increased the amount of protein in the dendritic processes, resulting in a dense network covering the entire retina. Constant light decreased melanopsin immunostaining time dependently, beginning in the distal dendrites and progressing to the proximal dendrites and the soma. Our observations suggest that the intrinsic light-responsive RGCs adapt their expression of the putative circadian photopigment melanopsin to environmental light and darkness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Belenky M. A., Smeraski C. A., Provencio I., Sollars P. J., and Pickard G. E. (2003) Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses. J. Comp. Neurol. 460, 380–393.

    Article  PubMed  Google Scholar 

  • Berson D. M., Dunn F. A., and Takao M. (2002) Photo-transduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073.

    Article  PubMed  CAS  Google Scholar 

  • Cagampang F. R., Yang J., Nakayama Y., Fukuhara C., and Inouye S. T. (1994) Circadian variation of arginine-vasopressin messenger RNA in the rat suprachiasmatic nucleus. Brain Res. Mol. Brain Res. 24, 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Castrucci A. D. L., Ihara N., Doyle S. E., Rollag M. D., Provencio I., and Menaker M. (2004) Light regulation of melanopsin positive retinal ganglion cells in the albino hamster. Invest. Ophthalmol. Vis. Sci. 45, Abstr. 4645.

    Google Scholar 

  • Chomczynski P. and Sacchi N. (1987) Single-step methods of RNA isolation by acid guanidium thiocyanatephenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Dacey D. M., Liao H. W., Peterson B. B., Robinson F. R., Smith V. C., Pokorny J., et al. (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749–754.

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J., Nielsen H. S., and Hannibal J. (2004) Expression of melanopsin during development of the rat retina. Neuroreport 15, 781–784.

    Article  PubMed  Google Scholar 

  • Field M. D., Maywood E. S., O’Brien J. A., Weaver D. R., Reppert S. M., and Hastings M. H. (2000) Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25, 437–447.

    Article  PubMed  CAS  Google Scholar 

  • Gooley J. J., Lu J., Fischer D., and Saper C. B. (2003) A broad role for melanopsin in nonvisual photoreception. J. Neurosci. 23, 7093–7106.

    PubMed  CAS  Google Scholar 

  • Hannibal J. (2002) Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res. 309, 73–88.

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J. and Fahrenkrug J. (2004) Melanopsin containing retinal ganglion cells are light responsive from birth. Neuroreport 15, 2317–2320.

    Article  PubMed  CAS  Google Scholar 

  • Hannibal J., Hindersson P., Knudsen S. M., Georg B., and Fahrenkrug J. (2002) The photopigment melanopsin is exclusively present in PACAP containing retinal ganglion cells of the retinohypothalamic tract. J. Neurosci. 22(RC191), 1–7.

    Google Scholar 

  • Hannibal J., Hindersson P., Óstergaard J., Georg B., Heegaard S., Larsen P. J., and Fahrenkrug J. (2004) Melanopsin is expressed in PACAP containing retinal ganglion cells of the human retinohypothalamic tract. Invest. Ophthalmol. Vis. Sci. 45, 4202–4209.

    Article  PubMed  Google Scholar 

  • Hannibal J., Mikkelsen J. D., Fahrenkrug J., and Larsen P. J. (1995) Pituitary adenylate cyclase-activating peptide gene expression in corticotropin-releasing factor-containing parvicellular neurons of the rat hypothalamic paraventricular nucleus is induced by colchicines, but not by adrenalectomy, acute osmotic, ether, or restraint stress. Endocrinology 136, 4116–4124.

    Article  PubMed  CAS  Google Scholar 

  • Hattar S., Liao H. W., Takao M., Berson D. M., and Yau K. W. (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • Klein D. C., Moore R. Y., and Reppert S. M. (1991) Suprachiasmatic nucleus: The Mind’s Clock, Oxford University Press, New York.

    Google Scholar 

  • Lucas R. J., Hattar S., Takao M., Berson D. M., Foster R. G., and Yau K. W. (2003) Diminished papillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Melyan Z., Tarttelin E. E., Bellingham J., Lucas R. J., and Hankins M. W. (2005) Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745.

    Article  PubMed  CAS  Google Scholar 

  • Morin L. P., Blanchard J. H., and Provencio I. (2003) Retinal ganglion cells projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet and visual midbrain: bifurcation and melanopsin immunoreactivity. J. Comp. Neurol. 465, 401–416.

    Article  PubMed  Google Scholar 

  • Newman L. A., Walker M. T., Brown R. L., Cronin T. W., and Robinson P. R. (2003) Melanopsin forms a functional short-wavelength photopigment. Biochemistry 42, 12734–12738.

    Article  PubMed  CAS  Google Scholar 

  • Panda S., Nayak S. K., Campo B., Walker J. R., Hogenesch J. B., and Jegla T. (2005) Illumination of melanopsin signaling pathway. Science 307, 600–604.

    Article  PubMed  CAS  Google Scholar 

  • Panda S., Sato T. K., Castrucci A. M., Rollag M. D., DeGrip W. J., Hogenesch J. B., et al. (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 2213–2216.

    Article  PubMed  CAS  Google Scholar 

  • Provencio I., Jiang G., De grip W. J., Hayes W. P., and Rollag M. D. (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. U. S. A. 95, 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Provencio I., Rollag M. D., and Castrucci A. M. (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493.

    Article  PubMed  CAS  Google Scholar 

  • Qiu X., Kumbalasiri T., Carlson S. M., Wong K. Y., Krishna V., Provencio I., and Berson D. M. (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745–749.

    Article  PubMed  CAS  Google Scholar 

  • Reppert S. M. and Weaver D. R. (2002) Coordination of circadian timing in mammals. Nature 418, 935–941.

    Article  PubMed  CAS  Google Scholar 

  • Ruby N. F., Brennan T. J., Xie X., Cao V., Franken P., Heller H. C., and O’Hara B. F. (2002) Role of melanopsin in circadian responses to light. Science 298, 2211–2213.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K., Liu C., and Tosini G. (2004) Classical photoreceptors regulate melanopsin mRNA levels in the rat retina. J. Neurosci. 24, 9693–9697.

    Article  PubMed  CAS  Google Scholar 

  • Sancar A. (2000) Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annu. Rev. Biochem. 69, 31–67.

    Article  PubMed  CAS  Google Scholar 

  • Semo M., Peirson S., Lupi D., Lucas R. J., Jeffery G., and Foster R. G. (2003) Melanopsin retinal ganglion cells and the maintenance of circadian and papillary responses to light in aged rodles/coneless (rd/rd cl) mice. Eur. J. Neurosci. 17, 1793–1801.

    Article  PubMed  Google Scholar 

  • Sollars P. J., Smeraski C. A., Kaufman J. D., Ogilvie M. D., Provencio I., and Pickard G. E. (2003) Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Vis. Neurosci. 20, 601–610.

    Article  PubMed  Google Scholar 

  • Van Gelder R. N., Gibler T. M., Tu D., Embry K., Selby C. P., Thompson C. L., and Sancar A. (2002) Pleiotropic effects of cryptochromes 1 and 2 on free-running and light-entrained murine circadian rhythms. J. Neurogenet. 16, 181–203.

    Article  PubMed  Google Scholar 

  • Warren E. J., Allen C. N., Brown R. L., and Robinson D. W. (2003) Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur. J. Neurosci. 17, 1727–1735.

    Article  PubMed  Google Scholar 

  • Wong K. Y., Dunn F. A., and Berson D. M. (2004) Adaptation in ganglion-cell photoreceptors. Soc. Neurosci. 750, 7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Hannibal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannibal, J., Georg, B., Hindersson, P. et al. Light and darkness regulate melanopsin in the retinal ganglion cells of the albino wistar rat. J Mol Neurosci 27, 147–155 (2005). https://doi.org/10.1385/JMN:27:2:147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:27:2:147

Index Entries

Navigation