Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 2, 2006

N-Ethylmaleimide-sensitive factor: a redox sensor in exocytosis

  • Charles J. Lowenstein and Hiromasa Tsuda
From the journal Biological Chemistry

Abstract

Vascular injury triggers endothelial exocytosis of granules, releasing pro-inflammatory and pro-thrombotic mediators into the blood. Nitric oxide (NO) and reactive oxygen species (ROS) limit vascular inflammation and thrombosis by inhibiting endothelial exocytosis. NO decreases exocytosis by regulating the activity of the N-ethylmaleimide-sensitive factor (NSF), a central component of the exocytic machinery. NO nitrosylates specific cysteine residues of NSF, thereby inhibiting NSF disassembly of the soluble NSF attachment protein receptor (SNARE). NO also modulates exocytosis of other cells; for example, NO regulates platelet activation by inhibiting α-granule secretion from platelets. Other radicals besides NO can regulate exocytosis as well. For example, H2O2 inhibits exocytosis by oxidizing NSF. Using site-directed mutagenesis, we have defined the critical cysteine residues of NSF, and found that one particular cysteine residue, C264, renders NSF sensitive to oxidative stress. Since radicals such as NO and H2O2 inhibit NSF and decrease exocytosis, NSF may act as a redox sensor, modulating exocytosis in response to changes in oxidative stress.

:

Corresponding author

References

Ahluwalia, A., Foster, P., Scotland, R.S., McLean, P.G., Mathur, A., Perretti, M., Moncada, S., and Hobbs, A.J. (2004). Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc. Natl. Acad. Sci. USA101, 1386–1391.10.1073/pnas.0304264101Search in Google Scholar

Arac, D., Chen, X., Khant, H.A., Ubach, J., Ludtke, S.J., Kikkawa, M., Johnson, A.E., Chiu, W., Sudhof, T.C., and Rizo, J. (2006). Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol.13, 209–217.10.1038/nsmb1056Search in Google Scholar

Babor, S.M. and Fass, D. (1999). Crystal structure of the Sec18p N-terminal domain. Proc. Natl. Acad. Sci. USA96, 14759–14764.10.1073/pnas.96.26.14759Search in Google Scholar

Banerjee, A., Barry, V.A., DasGupta, B.R., and Martin, T.F. (1996). N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J. Biol. Chem.271, 20223–20226.10.1074/jbc.271.34.20223Search in Google Scholar

Beghetti, M., Sparling, C., Cox, P.N., Stephens, D., and Adatia, I. (2003). Inhaled NO inhibits platelet aggregation and elevates plasma but not intraplatelet cGMP in healthy human volunteers. Am. J. Physiol. Heart Circ. Physiol.285, H637–H642.10.1152/ajpheart.00622.2002Search in Google Scholar

Bittner, M.A. and Holz, R.W. (1992). Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J. Biol. Chem.267, 16219–16225.10.1016/S0021-9258(18)41988-6Search in Google Scholar

Block, M.R., Glick, B.S., Wilcox, C.A., Wieland, F.T., and Rothman, J.E. (1988). Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl. Acad. Sci. USA85, 7852–7856.10.1073/pnas.85.21.7852Search in Google Scholar

Brune, B. and Lapetina, E.G. (1990). Properties of a novel nitric oxide-stimulated ADP-ribosyltransferase. Arch. Biochem. Biophys.279, 286–290.10.1016/0003-9861(90)90493-ISearch in Google Scholar

Burgoyne, R.D. and Morgan, A. (1998). Analysis of regulated exocytosis in adrenal chromaffin cells: insights into NSF/SNAP/SNARE function. Bioessays20, 328–335.10.1002/(SICI)1521-1878(199804)20:4<328::AID-BIES9>3.0.CO;2-LSearch in Google Scholar

Busse, R., Luckhoff, A., and Bassenge, E. (1987). Endothelium-derived relaxant factor inhibits platelet activation. Naunyn-Schmiedeberg's Arch. Pharmacol.336, 566–571.10.1007/BF00169315Search in Google Scholar

Cai, H. and Harrison, D.G. (2000). Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res.87, 840–844.10.1161/01.RES.87.10.840Search in Google Scholar

Cai, H., Griendling, K.K., and Harrison, D.G. (2003). The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol. Sci.24, 471–478.10.1016/S0165-6147(03)00233-5Search in Google Scholar

Chen, D., Bernstein, A.M., Lemons, P.P., and Whiteheart, S.W. (2000a). Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood95, 921–929.10.1182/blood.V95.3.921.003k17_921_929Search in Google Scholar

Chen, D., Lemons, P.P., Schraw, T., and Whiteheart, S.W. (2000b). Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 and 4 in lysosome release. Blood96, 1782–1788.10.1182/blood.V96.5.1782.h8001782_1782_1788Search in Google Scholar

Christopherson, K.S. and Bredt, D.S. (1997). Nitric oxide in excitable tissues: physiological roles and disease. J. Clin. Invest.100, 2424–2429.10.1172/JCI119783Search in Google Scholar PubMed PubMed Central

Davignon, J. and Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation109, III27–32.10.1161/01.CIR.0000131515.03336.f8Search in Google Scholar PubMed

De Caterina, R., Libby, P., Peng, H.B., Thannickal, V.J., Rajavashisth, T.B., Gimbrone, M.A. Jr., Shin, W.S., and Liao, J.K. (1995). Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest.96, 60–68.Search in Google Scholar

Feil, R., Lohmann, S.M., de Jonge, H., Walter, U., and Hofmann, F. (2003). Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice. Circ. Res.93, 907–916.10.1161/01.RES.0000100390.68771.CCSearch in Google Scholar PubMed

Feng, D., Crane, K., Rozenvayn, N., Dvorak, A.M., and Flaumenhaft, R. (2002). Subcellular distribution of three functional platelet SNARE proteins: human cellubrevin, SNAP-23, and syntaxin 2. Blood99, 4006–4014.10.1182/blood.V99.11.4006Search in Google Scholar PubMed

Furchgott, R.F. and Vanhoutte, P.M. (1989). Endothelium-derived relaxing and contracting factors. FASEB J.3, 2007–2018.10.1096/fasebj.3.9.2545495Search in Google Scholar

Gordge, M.P., Hothersall, J.S., and Noronha-Dutra, A.A. (1998). Evidence for a cyclic GMP-independent mechanism in the anti-platelet action of S-nitrosoglutathione. Br. J. Pharmacol.124, 141–148.10.1038/sj.bjp.0701821Search in Google Scholar PubMed PubMed Central

Hanson, P.I., Roth, R., Morisaki, H., Jahn, R., and Heuser, J.E. (1997). Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell90, 523–535.10.1016/S0092-8674(00)80512-7Search in Google Scholar

Ignarro, L.J. (1990). Haem-dependent activation of guanylate cyclase and cyclic GMP formation by endogenous nitric oxide: a unique transduction mechanism for transcellular signaling. Pharmacol. Toxicol.67, 1–7.10.1111/j.1600-0773.1990.tb00772.xSearch in Google Scholar PubMed

Jaffrey, S.R., Erdjument-Bromage, H., Ferris, C.D., Tempst, P., and Snyder, S.H. (2001). Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol.3, 193–197.10.1038/35055104Search in Google Scholar PubMed

Jahn, R. and Sudhof, T.C. (1999). Membrane fusion and exocytosis. Annu. Rev. Biochem.68, 863–911.10.1146/annurev.biochem.68.1.863Search in Google Scholar PubMed

Kubes, P., Suzuki, M., and Granger, D.N. (1991). Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA88, 4651–4655.10.1073/pnas.88.11.4651Search in Google Scholar PubMed PubMed Central

Kuhlencordt, P.J., Chen, J., Han, F., Astern, J., and Huang, P.L. (2001a). Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice. Circulation103, 3099–3104.10.1161/01.CIR.103.25.3099Search in Google Scholar

Kuhlencordt, P.J., Gyurko, R., Han, F., Scherrer-Crosbie, M., Aretz, T.H., Hajjar, R., Picard, M.H., and Huang, P.L. (2001b). Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation104, 448–454.10.1161/hc2901.091399Search in Google Scholar PubMed

Kuhlencordt, P.J., Rosel, E., Gerszten, R.E., Morales-Ruiz, M., Dombkowski, D., Atkinson, W.J., Han, F., Preffer, F., Rosenzweig, A., Sessa, W.C., et al. (2004). Role of endothelial nitric oxide synthase in endothelial activation: insights from eNOS knockout endothelial cells. Am. J. Physiol. Cell Physiol.286, C1195–C1202.10.1152/ajpcell.00546.2002Search in Google Scholar PubMed

Lemons, P.P., Chen, D., Bernstein, A.M., Bennett, M.K., and Whiteheart, S.W. (1997). Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery. Blood90, 1490–1500.10.1182/blood.V90.4.1490Search in Google Scholar

Lemons, P.P., Chen, D., and Whiteheart, S.W. (2000). Molecular mechanisms of platelet exocytosis: requirements for α-granule release. Biochem. Biophys. Res. Commun.267, 875–880.10.1006/bbrc.1999.2039Search in Google Scholar PubMed

Lenzen, C.U., Steinmann, D., Whiteheart, S.W., and Weis, W.I. (1998). Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell94, 525–536.10.1016/S0092-8674(00)81593-7Search in Google Scholar

Lin, R.C. and Scheller, R.H. (2000). Mechanisms of synaptic vesicle exocytosis. Annu. Rev. Cell Dev. Biol.16, 19–49.10.1146/annurev.cellbio.16.1.19Search in Google Scholar

Littleton, J.T. and Bellen, H.J. (1995). Presynaptic proteins involved in exocytosis in Drosophila melanogaster: a genetic analysis. Invert. Neurosci.1, 3–13.10.1007/BF02331827Search in Google Scholar

Littleton, J.T., Chapman, E.R., Kreber, R., Garment, M.B., Carlson, S.D., and Ganetzky, B. (1998). Temperature-sensitive paralytic mutations demonstrate that synaptic exocytosis requires SNARE complex assembly and disassembly. Neuron21, 401–413.10.1016/S0896-6273(00)80549-8Search in Google Scholar

Loscalzo, J. (1992). Antiplatelet and antithrombotic effects of organic nitrates. Am. J. Cardiol.70, 18B–22B.10.1016/0002-9149(92)90590-USearch in Google Scholar

Loscalzo, J. (2001). Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ. Res.88, 756–762.10.1161/hh0801.089861Search in Google Scholar

Lowenstein, C.J., Morrell, C.N., and Yamakuchi, M. (2005). Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc. Med.15, 302–308.10.1016/j.tcm.2005.09.005Search in Google Scholar

Malhotra, V., Orci, L., Glick, B.S., Block, M.R., and Rothman, J.E. (1988). Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell54, 221–227.10.1016/0092-8674(88)90554-5Search in Google Scholar

Marletta, M.A., Tayeh, M.A., and Hevel, J.M. (1990). Unraveling the biological significance of nitric oxide. Biofactors2, 219–225.Search in Google Scholar

Marshall, H.E. and Stamler, J.S. (2001). Inhibition of NF-κB by S-nitrosylation. Biochemistry40, 1688–1693.10.1021/bi002239ySearch in Google Scholar

Matsushita, K., Morrell, C.N., Cambien, B., Yang, S.X., Yamakuchi, M., Bao, C., Hara, M.R., Quick, R.A., Cao, W., O'Rourke, B., et al. (2003). Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell115, 139–150.10.1016/S0092-8674(03)00803-1Search in Google Scholar

Matsushita, K., Morrell, C.N., Mason, R.J., Yamakuchi, M., Khanday, F.A., Irani, K., and Lowenstein, C.J. (2005). Hydrogen peroxide regulation of endothelial exocytosis by inhibition of N-ethylmaleimide sensitive factor. J. Cell Biol.170, 73–79.10.1083/jcb.200502031Search in Google Scholar

Matthews, J.R., Botting, C.H., Panico, M., Morris, H.R., and Hay, R.T. (1996). Inhibition of NF-κB DNA binding by nitric oxide. Nucleic Acids Res.24, 2236–2242.10.1093/nar/24.12.2236Search in Google Scholar

Mayer, A. and Wickner, W. (1997). Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J. Cell Biol.136, 307–317.10.1083/jcb.136.2.307Search in Google Scholar

Mayer, A., Wickner, W., and Haas, A. (1996). Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell85, 83–94.10.1016/S0092-8674(00)81084-3Search in Google Scholar

McBride, H.M., Rybin, V., Murphy, C., Giner, A., Teasdale, R., and Zerial, M. (1999). Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell98, 377–386.10.1016/S0092-8674(00)81966-2Search in Google Scholar

McDonald, L.J. and Murad, F. (1995). Nitric oxide and cGMP signaling. Adv. Pharmacol.34, 263–275.10.1016/S1054-3589(08)61091-1Search in Google Scholar

Mellion, B.T., Ignarro, L.J., Ohlstein, E.H., Pontecorvo, E.G., Hyman, A.L., and Kadowitz, P.J. (1981). Evidence for the inhibitory role of guanosine 3′,5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood57, 946–955.10.1182/blood.V57.5.946.946Search in Google Scholar

Mendelsohn, M.E., O'Neill, S., George, D., and Loscalzo, J. (1990). Inhibition of fibrinogen binding to human platelets by S-nitroso N-acetylcysteine. J. Biol. Chem.265, 19028–19034.10.1016/S0021-9258(17)30619-1Search in Google Scholar

Michel, T. and Feron, O. (1997). Nitric oxide synthases: which, where, how, and why? J. Clin. Invest.100, 2146–2152.10.1172/JCI119750Search in Google Scholar PubMed PubMed Central

Morgan, A. (1996). Classic clues to NSF function. Nature382, 680.10.1038/382680a0Search in Google Scholar PubMed

Moro, M.A., Russel, R.J., Cellek, S., Lizasoain, I., Su, Y., Darley-Usmar, V.M., Radomski, M.W., and Moncada, S. (1996). cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc. Natl. Acad. Sci. USA93, 1480–1485.10.1073/pnas.93.4.1480Search in Google Scholar

Morrell, C.N., Matsushita, K., Chiles, K., Scharpf, R.B., Yamakuchi, M., Mason, R.J., Bergmeier, W., Mankowski, J.L., Baldwin, W.M. III, Faraday, N., and Lowenstein, C.J. (2005). Regulation of platelet granule exocytosis by S-nitrosylation. Proc. Natl. Acad. Sci. USA102, 3782–3787.10.1073/pnas.0408310102Search in Google Scholar

Nichols, B.J., Ungermann, C., Pelham, H.R., Wickner, W.T., and Haas, A. (1997). Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature387, 199–202.10.1038/387199a0Search in Google Scholar

Olson, T.S. and Ley, K. (2002). Chemokines and chemokine receptors in leukocyte trafficking. Am. J. Physiol. Regul. Integr. Comp. Physiol.283, R7–R28.10.1152/ajpregu.00738.2001Search in Google Scholar

Papapetropoulos, A., Rudic, R.D., and Sessa, W.C. (1999). Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovasc. Res.43, 509–520.10.1016/S0008-6363(99)00161-3Search in Google Scholar

Patel, S. and Latterich, M. (1998). The AAA team: related ATPases with diverse functions. Trends Cell Biol.8, 65–71.10.1016/S0962-8924(97)01212-9Search in Google Scholar

Pawloski, J.R., Swaminathan, R.V., and Stamler, J.S. (1998). Cell-free and erythrocytic S-nitrosohemoglobin inhibits human platelet aggregation. Circulation97, 263–267.10.1161/01.CIR.97.3.263Search in Google Scholar PubMed

Peng, H.B., Libby, P., and Liao, J.K. (1995). Induction and stabilization of IκBα by nitric oxide mediates inhibition of NF-κB. J. Biol. Chem.270, 14214–14219.10.1074/jbc.270.23.14214Search in Google Scholar PubMed

Pernollet, M.G., Lantoine, F., and Devynck, M.A. (1996). Nitric oxide inhibits ATP-dependent Ca2+ uptake into platelet membrane vesicles. Biochem. Biophys. Res. Commun.222, 780–785.10.1006/bbrc.1996.0821Search in Google Scholar PubMed

Pigazzi, A., Heydrick, S., Folli, F., Benoit, S., Michelson, A., and Loscalzo, J. (1999). Nitric oxide inhibits thrombin receptor-activating peptide-induced phosphoinositide 3-kinase activity in human platelets. J. Biol. Chem.274, 14368–14375.10.1074/jbc.274.20.14368Search in Google Scholar PubMed

Polgar, J. and Reed, G.L. (1999). A critical role for N-ethylmaleimide-sensitive fusion protein (NSF) in platelet granule secretion. Blood94, 1313–1318.10.1182/blood.V94.4.1313Search in Google Scholar

Polgar, J., Chung, S.H., and Reed, G.L. (2002). Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion. Blood100, 1081–1083.10.1182/blood.V100.3.1081Search in Google Scholar

Radomski, M.W. and Moncada, S. (1993). Regulation of vascular homeostasis by nitric oxide. Thromb. Haemost.70, 36–41.10.1055/s-0038-1646156Search in Google Scholar

Radomski, M.W., Palmer, R.M., and Moncada, S. (1987). Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet2, 1057–1058.10.1016/S0140-6736(87)91481-4Search in Google Scholar

Reed, G.L., Houng, A.K., and Fitzgerald, M.L. (1999). Human platelets contain SNARE proteins and a Sec1p homologue that interacts with syntaxin 4 and is phosphorylated after thrombin activation: implications for platelet secretion. Blood93, 2617–2626.10.1182/blood.V93.8.2617Search in Google Scholar

Rothman, J.E. (1994). Mechanisms of intracellular protein transport. Nature372, 55–63.10.1038/372055a0Search in Google Scholar

Rowe, T. and Balch, W.E. (1997). Membrane fusion. Bridging the gap by AAA ATPases. Nature388, 20–21.Search in Google Scholar

Rubanyi, G.M. (1991). Endothelium-derived relaxing and contracting factors. J. Cell Biochem.46, 27–36.10.1002/jcb.240460106Search in Google Scholar

Rudic, R.D., Shesely, E.G., Maeda, N., Smithies, O., Segal, S.S., and Sessa, W.C. (1998). Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J. Clin. Invest.101, 731–736.10.1172/JCI1699Search in Google Scholar

Sogo, N., Magid, K.S., Shaw, C.A., Webb, D.J., and Megson, I.L. (2000). Inhibition of human platelet aggregation by nitric oxide donor drugs: relative contribution of cGMP-independent mechanisms. Biochem. Biophys. Res. Commun.279, 412–419.10.1006/bbrc.2000.3976Search in Google Scholar

Sollner, T.H. and Sequeira, S. (2003). S-Nitrosylation of NSF controls membrane trafficking. Cell115, 127–129.10.1016/S0092-8674(03)00811-0Search in Google Scholar

Sollner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J.E. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature362, 318–324.10.1038/362318a0Search in Google Scholar

Stamler, J.S., Singel, D.J., and Loscalzo, J. (1992). Biochemistry of nitric oxide and its redox-activated forms. Science258, 1898–1902.10.1126/science.1281928Search in Google Scholar

Tsikas, D., Ikic, M., Tewes, K.S., Raida, M., and Frolich, J.C. (1999). Inhibition of platelet aggregation by S-nitroso-cysteine via cGMP-independent mechanisms: evidence of inhibition of thromboxane A2 synthesis in human blood platelets. FEBS Lett.442, 162–166.10.1016/S0014-5793(98)01633-0Search in Google Scholar

Whiteheart, S.W., Rossnagel, K., Buhrow, S.A., Brunner, M., Jaenicke, R., and Rothman, J.E. (1994). N-Ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol.126, 945–954.10.1083/jcb.126.4.945Search in Google Scholar

Xu, D., Rovira, I.I., and Finkel, T. (2002). Oxidants painting the cysteine chapel: redox regulation of PTPs. Dev. Cell2, 251–252.10.1016/S1534-5807(02)00132-6Search in Google Scholar

Yu, R.C., Hanson, P.I., Jahn, R., and Brunger, A.T. (1998). Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nat. Struct. Biol.5, 803–811.10.1038/1843Search in Google Scholar PubMed

Published Online: 2006-11-02
Published in Print: 2006-10-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.173/html
Scroll to top button