Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 4, 2013

Interleukin-6 and interleukin-11: same same but different

  • Christoph Garbers

    Christoph Garbers received his diploma degree in Pharmacy in 2007 at the University of Kiel, Germany, and his licensure as pharmacist in 2008. He joined the group ‘Cytokine and Metalloproteinase Research’ at the Institute of Biochemistry of the University of Kiel in 2008 and obtained his Dr. rer. nat. in 2011 for the functional characterization of ADAM proteases in IL-6R shedding. He then moved to the Heinrich-Heine-University Düsseldorf, Germany, and has worked since 2011 at the Institute of Biochemistry and Molecular Biology II as a postdoctoral research associate. His current interests are focused on limited proteolysis of cytokine receptors and signal transduction of IL-6 type cytokines.

    and Jürgen Scheller

    Jürgen Scheller finished his diploma study of Biology in 1997 at the Georg-August University of Göttingen, Germany and obtained his Dr. rer. nat. in 1999 for the role of MPH1 in DNA-repair of Saccharomyces cerevisiae. He joined the group ‘Phytoantibodies’ at the Leibniz-Institut IPK in Gatersleben, Germany in 1999. From 1999 to 2002 he worked on spider silk proteins from transgenic plants. In 2002 he became assistant professor at the Biochemical Institute at Christian-Albrechts-Universität of Kiel, Germany. In 2008 he became W2-Professor for ‘Cytokine Signaling’ within the Cluster of Excellence ‘Inflammation at Interfaces’ at Christian-Albrechts-Universität of Kiel, Germany. In 2010 he moved to the Heinrich-Heine-University and became the director of the Institute of Biochemistry and Molecular Biology II as a W3-Professor. His present interests are focused on in vitro and in vivo studies of IL-6-type cytokines.

    EMAIL logo
From the journal Biological Chemistry

Abstract

The pleiotropic physiological functions of interleukin (IL-)6 type cytokines range from embryonic development and tissue homoeostasis to neuronal development and T cell differentiation. In contrast, imbalance of the well-controlled cytokine signaling network leads to chronic inflammatory diseases and cancer. IL-6 and IL-11 both signal through a homodimer of the ubiquitously expressed β-receptor glycoprotein 130 (gp130). Specificity is gained through an individual IL-6/IL-11 α-receptor, which does not directly participate in signal transduction, although the initial cytokine binding event to the α-receptor leads to the final complex formation with the β-receptors. Both cytokines activate the same downstream signaling pathways, which are predominantly the mitogen-activated protein kinase (MAPK)-cascade and the Janus kinase/signal transducer and activator of transcription (Jak/STAT) pathway. However, recent studies have highlighted divergent roles of the two related cytokines. Here, we will discuss how the biochemical similarities are translated into unique and non-redundant functions of IL-6 and IL-11 in vivo and illustrate strategies for cytokine-specific therapeutic intervention.


Corresponding author: Jürgen Scheller, Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany

About the authors

Christoph Garbers

Christoph Garbers received his diploma degree in Pharmacy in 2007 at the University of Kiel, Germany, and his licensure as pharmacist in 2008. He joined the group ‘Cytokine and Metalloproteinase Research’ at the Institute of Biochemistry of the University of Kiel in 2008 and obtained his Dr. rer. nat. in 2011 for the functional characterization of ADAM proteases in IL-6R shedding. He then moved to the Heinrich-Heine-University Düsseldorf, Germany, and has worked since 2011 at the Institute of Biochemistry and Molecular Biology II as a postdoctoral research associate. His current interests are focused on limited proteolysis of cytokine receptors and signal transduction of IL-6 type cytokines.

Jürgen Scheller

Jürgen Scheller finished his diploma study of Biology in 1997 at the Georg-August University of Göttingen, Germany and obtained his Dr. rer. nat. in 1999 for the role of MPH1 in DNA-repair of Saccharomyces cerevisiae. He joined the group ‘Phytoantibodies’ at the Leibniz-Institut IPK in Gatersleben, Germany in 1999. From 1999 to 2002 he worked on spider silk proteins from transgenic plants. In 2002 he became assistant professor at the Biochemical Institute at Christian-Albrechts-Universität of Kiel, Germany. In 2008 he became W2-Professor for ‘Cytokine Signaling’ within the Cluster of Excellence ‘Inflammation at Interfaces’ at Christian-Albrechts-Universität of Kiel, Germany. In 2010 he moved to the Heinrich-Heine-University and became the director of the Institute of Biochemistry and Molecular Biology II as a W3-Professor. His present interests are focused on in vitro and in vivo studies of IL-6-type cytokines.

This work was funded by grants from the Deutsche Forschungsgemeinschaft, Bonn, Germany (to J.S. – DFG SCHE 907/2) and the Research Commission of the Medical Faculty of the Heinrich-Heine-University (to C.G. and J.S.).

References

Adam, N., Rabe, B., Suthaus, J., Grötzinger, J., Rose-John, S., and Scheller, J. (2009). Unraveling viral interleukin 6 binding to gp130 and activation of STAT-signaling pathways independent of interleukin 6-receptor. J. Virol. 83, 5117–5126.10.1128/JVI.01601-08Search in Google Scholar

Aitsebaomo, J., Srivastava, S., Zhang, H., Jha, S., Wang, Z., Winnik, S., Veleva, A., Pi, X., Lockyer, P., Faber, J., et al. (2011). Recombinant human interleukin-11 treatment enhances collateral vessel growth after femoral artery ligation. Arterioscler. Thromb. Vasc. Biol. 31, 306–312.10.1161/ATVBAHA.110.216986Search in Google Scholar

Ammit, A.J., Moir, L.M., Oliver, B.G., Hughes, J.M., Alkhouri, H., Ge, Q., Burgess, J.K., Black, J.L., and Roth, M. (2007). Effect of IL-6 trans-signaling on the pro-remodeling phenotype of airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 292, 199–206.10.1152/ajplung.00230.2006Search in Google Scholar

Atreya, R., Mudter, J., Finotto, S., Müllberg, J., Jostock, T., Wirtz, S., Schütz, M., Bartsch, B., Holtmann, M., Becker, C., et al. (2000). Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat. Med. 6, 583–588.10.1038/75068Search in Google Scholar

Bazan, J.F. (1989). A novel family of growth factor receptors: a common binding domain in the growth hormone, prolactin, erythropoietin and IL-6 receptors, and the p75 IL-2 receptor β-chain. Biochem. Biophys. Res. Commun. 164, 788–795.10.1016/0006-291X(89)91528-3Search in Google Scholar

Bazan, J.F. (1990). Haemopoietic receptors and helical cytokines. Immunol. Today 11, 350–354.10.1016/0167-5699(90)90139-ZSearch in Google Scholar

Becker, C., Fantini, M.C., Schramm, C., Lehr, H.A., Wirtz, S., Nikolaev, A., Burg, J., Strand, S., Kiesslich, R., Huber, S., et al. (2004). TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21, 491–501.10.1016/j.immuni.2004.07.020Search in Google Scholar

Becker, C., Fantini, M.C., Wirtz, S., Nikolaev, A., Lehr, H.A., Galle, P.R., Rose-John, S., and Neurath, M.F. (2005). IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 4, 217–220.10.4161/cc.4.2.1413Search in Google Scholar

Benigni, F., Fantuzzi, G., Sacco, S., Sironi, M., Pozzi, P., Dinarello, C.A., Sipe, J.D., Poli, V., Cappelletti, M., Paonessa, G., et al. (1996). Six different cytokines that share GP130 as a receptor subunit, induce serum amyloid A and potentiate the induction of interleukin-6 and the activation of the hypothalamus-pituitary-adrenal axis by interleukin-1. Blood 87, 1851–1854.10.1182/blood.V87.5.1851.1851Search in Google Scholar

Boulanger, M.J., Bankovich, A.J., Kortemme, T., Baker, D., and Garcia, K.C. (2003). Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130. Mol. Cell 12, 577–589.10.1016/S1097-2765(03)00365-4Search in Google Scholar

Briso, E.M., Dienz, O., and Rincon, M. (2008). Cutting edge: soluble IL-6R is produced by IL-6R ectodomain shedding in activated CD4 T cells. J. Immunol. 180, 7102–7106.10.4049/jimmunol.180.11.7102Search in Google Scholar

Broide, D.H., Lotz, M., Cuomo, A.J., Coburn, D.A., Federman, E.C., and Wasserman, S.I. (1992). Cytokines in symptomatic asthma airways. J. Allergy Clin. Immunol. 89, 958–967.10.1016/0091-6749(92)90218-QSearch in Google Scholar

Brown, M.A., Pile, K.D., Kennedy, L.G., Calin, A., Darke, C., Bell, J., Wordsworth, B.P., and Cornélis, F. (1996). HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann. Rheum. Dis. 55, 268–277.10.1136/ard.55.4.268Search in Google Scholar

Calon, A., Espinet, E., Palomo-Ponce, S., Tauriello, D., Iglesias, M., Céspedes, M., Sevillano, M., Nadal, C., Jung, P., Zhang, X., et al. (2012). Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584.10.1016/j.ccr.2012.08.013Search in Google Scholar

Camporeale, A., Marino, F., Papageorgiou, A., Carai, P., Fornero, S., Fletcher, S., Page, B.D., Gunning, P., Forni, M., Chiarle, R., et al. (2013). STAT3 activity is necessary and sufficient for the development of immune-mediated myocarditis in mice and promotes progression to dilated cardiomyopathy. EMBO Mol. Med. 5, 572–590.10.1002/emmm.201201876Search in Google Scholar

Chalaris, A., Garbers, C., Rabe, B., Rose-John, S., and Scheller, J. (2011). The soluble Interleukin 6 receptor: generation and role in inflammation and cancer. Eur. J. Cell Biol. 90, 484–494.10.1016/j.ejcb.2010.10.007Search in Google Scholar

Chow, D., He, X., Snow, A.L., Rose-John, S., and Garcia, K.C. (2001). Structure of an extracellular gp130 cytokine receptor signaling complex. Science 291, 2150–2155.10.1126/science.1058308Search in Google Scholar

Coles, B., Fielding, C.A., Rose-John, S., Scheller, J., Jones, S.A., and O’Donnell, V.B. (2007). Classic interleukin-6 receptor signaling and interleukin-6 trans-signaling differentially control angiotensin II-dependent hypertension, cardiac signal transducer and activator of transcription-3 activation, and vascular hypertrophy in vivo. Am. J. Pathol. 171, 315–325.10.2353/ajpath.2007.061078Search in Google Scholar

Collaboration, I. R. G. C. E. R. F. (2012). Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213.10.1016/S0140-6736(11)61931-4Search in Google Scholar

Collison, L.W., Delgoffe, G.M., Guy, C.S., Vignali, K.M., Chaturvedi, V., Fairweather, D., Satoskar, A.R., Garcia, K.C., Hunter, C.A., Drake, C.G., et al. (2012). The composition and signaling of the IL-35 receptor are unconventional. Nat. Immunol. 13, 290–299.10.1038/ni.2227Search in Google Scholar PubMed PubMed Central

Consortium, T. I.-R. M. R. A. I. R. M. (2012). The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379, 1214–1224.10.1016/S0140-6736(12)60110-XSearch in Google Scholar

Curtis, D.J., Hilton, D.J., Roberts, B., Murray, L., Nicola, N., and Begley, C.G. (1997). Recombinant soluble interleukin-11 (IL-11) receptor α-chain can act as an IL-11 antagonist. Blood 90, 4403–4412.10.1182/blood.V90.11.4403Search in Google Scholar

Dawn, B., Xuan, Y.T., Guo, Y., Rezazadeh, A., Stein, A.B., Hunt, G., Wu, W.J., Tan, W., and Bolli, R. (2004). IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovas. Res. 64, 61–71.10.1016/j.cardiores.2004.05.011Search in Google Scholar

De Benedetti, F., Alonzi, T., Moretta, A., Lazzaro, D., Costa, P., Poli, V., Martini, A., Ciliberto, G., and Fattori, E. (1997). Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J. Clin. Invest. 99, 643–650.10.1172/JCI119207Search in Google Scholar

De Benedetti, F., Rucci, N., Del Fattore, A., Peruzzi, B., Paro, R., Longo, M., Vivarelli, M., Muratori, F., Berni, S., Ballanti, P., et al. (2006). Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum. 54, 3551–3563.10.1002/art.22175Search in Google Scholar

DiCosmo, B.F., Geba, G.P., Picarella, D., Elias, J.A., Rankin, J.A., Stripp, B.R., Whitsett, J. A., and Flavell, R.A. (1994). Airway epithelial cell expression of interleukin-6 in transgenic mice. Uncoupling of airway inflammation and bronchial hyperreactivity. J. Clin. Invest. 94, 2028–2035.10.1172/JCI117556Search in Google Scholar

Doganci, A., Eigenbrod, T., Krug, N., De Sanctis, G.T., Hausding, M., Erpenbeck, V.J., Haddad, E.-B., Lehr, H.A., Schmitt, E., Bopp, T., et al. (2005a). The IL-6R alpha chain controls lung CD4+CD25+ Treg development and function during allergic airway inflammation in vivo. J. Clin. Invest. 115, 313–325.10.1172/JCI200522433Search in Google Scholar

Doganci, A., Sauer, K., Karwot, R., and Finotto, S. (2005b). Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin. Rev. Allergy Immunol. 28, 257–270.10.1385/CRIAI:28:3:257Search in Google Scholar

Du, X. and Williams, D. (1997). Interleukin-11: review of molecular, cell biology, and clinical use. Blood 89, 3897–3908.10.1182/blood.V89.11.3897Search in Google Scholar

Eckmann, L. (2006). Animal models of inflammatory bowel disease: lessons from enteric infections. Ann. N. Y. Acad. Sci. 1072, 28–38.10.1196/annals.1326.008Search in Google Scholar PubMed

Einarsson, O., Geba, G., Zhu, Z., Landry, M., and Elias, J. (1996). Interleukin-11: stimulation in vivo and in vitro by respiratory viruses and induction of airways hyperresponsiveness. J. Clin. Invest. 97, 915–924.10.1172/JCI118514Search in Google Scholar

Elias, J., Zheng, T., Einarsson, O., Landry, M., Trow, T., Rebert, N., and Panuska, J. (1994a). Epithelial interleukin-11. Regulation by cytokines, respiratory syncytial virus, and retinoic acid. J. Biol. Chem. 269, 22261–22268.10.1016/S0021-9258(17)31785-4Search in Google Scholar

Elias, J., Zheng, T., Whiting, N., Trow, T., Merrill, W., Zitnik, R., Ray, P., and Alderman, E. (1994b). IL-1 and transforming growth factor-beta regulation of fibroblast-derived IL-11. J. Immunol. 152, 2421–2429.10.4049/jimmunol.152.5.2421Search in Google Scholar

Elias, J., Wu, Y., Zheng, T., and Panettieri, R. (1997). Cytokine- and virus-stimulated airway smooth muscle cells produce IL-11 and other IL-6-type cytokines. Am. J. Physiol. 273, 648–655.10.1152/ajplung.1997.273.3.L648Search in Google Scholar PubMed

Ellingsgaard, H., Ehses, J.A., Hammar, E.B., Van Lommel, L., Quintens, R., Martens, G., Kerr-Conte, J., Pattou, F., Berney, T., Pipeleers, D., et al. (2008). Interleukin-6 regulates pancreatic α-cell mass expansion. Proc. Natl. Acad. Sci. USA 105, 13163–13168.10.1073/pnas.0801059105Search in Google Scholar PubMed PubMed Central

Ernst, M., Najdovska, M., Grail, D., Lundgren-May, T., Buchert, M., Tye, H., Matthews, V., Armes, J., Bhathal, P., Hughes, N., et al. (2008). STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice. J. Clin. Invest. 118, 1727–1738.10.1172/JCI34944Search in Google Scholar PubMed PubMed Central

Eulenfeld, R., Dittrich, A., Khouri, C., Muller, P. J., Mutze, B., Wolf, A., and Schaper, F. (2012). Interleukin-6 signalling: more than Jaks and STATs. Eur. J. Cell Biol. 91, 486–495.10.1016/j.ejcb.2011.09.010Search in Google Scholar PubMed

Ferreira, R.C., Freitag, D.F., Cutler, A.J., Howson, J.M.M., Rainbow, D.B., Smyth, D.J., Kaptoge, S., Clarke, P., Boreham, C., Coulson, R.M., et al. (2013). Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLos Genetics 9, e100344.10.1371/journal.pgen.1003444Search in Google Scholar PubMed PubMed Central

Finotto, S., Eigenbrod, T., Karwot, R., Boross, I., Doganci, A., Ito, H., Nishimoto, N., Yoshizaki, K., Kishimoto, T., Rose-John, S., et al. (2007). Local blockade of IL-6R signaling induces lung CD4+ T cell apoptosis in a murine model of asthma via regulatory T cells. Int. Immunol. 19, 685–693.10.1093/intimm/dxm037Search in Google Scholar PubMed

Fleischmann, R., Kremer, J., Cush, J., Schulze-Koops, H., Connell, C., Bradley, J., Gruben, D., Wallenstein, G., Zwillich, S., Kanik, K., et al. (2012). Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507.10.1056/NEJMoa1109071Search in Google Scholar PubMed

Fujio, Y., Maeda, M., Mohri, T., Obana, M., Iwakura, T., Hayama, A., Yamashita, T., Nakayama, H., and Azuma, J. (2011). Glycoprotein 130 cytokine signal as a therapeutic target against cardiovascular diseases. J. Pharmacol. Sci. 117, 213–222.10.1254/jphs.11R05CRSearch in Google Scholar PubMed

Gaillard, J.P., Bataille, R., Brailly, H., Zuber, C., Yasukawa, K., Attal, M., Maruo, N., Taga, T., Kishimoto, T., and Klein, B. (1993). Increased and highly stable levels of functional soluble interleukin-6 receptor in sera of patients with monoclonal gammopathy. Eur. J. Immunol. 23, 820–824.10.1002/eji.1830230408Search in Google Scholar

Galicia, J., Tai, H., Komatsu, Y., Shimada, Y., Akazawa, K., and Yoshie, H. (2004). Polymorphisms in the IL-6 receptor (IL-6R) gene: strong evidence that serum levels of soluble IL-6R are genetically influenced. Genes Immunity 5, 513–516.10.1038/sj.gene.6364120Search in Google Scholar

Garbers, C., Thaiss, W., Jones, G.W., Waetzig, G.H., Lorenzen, I., Guilhot, F., Lissilaa, R., Ferlin, W.G., Grotzinger, J., Jones, S.A., et al. (2011). Inhibition of classic signaling is a novel function of soluble glycoprotein 130 (sgp130), which is controlled by the ratio of interleukin 6 and soluble interleukin 6 receptor. J. Biol. Chem. 286, 42959–42970.10.1074/jbc.M111.295758Search in Google Scholar

Garbers, C., Hermanns, H.M., Schaper, F., Müller-Newen, G., Grötzinger, J., Rose-John, S., and Scheller, J. (2012). Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev. 23, 85–97.10.1016/j.cytogfr.2012.04.001Search in Google Scholar

Garbers, C., Spudy, B., Aparicio-Siegmund, S., Waetzig, G.H., Sommer, J., Hölscher, C., Rose-John, S., Grötzinger, J., Lorenzen, I., and Scheller, J. (2013). An interleukin-6 receptor-dependent molecular switch mediates signal transduction of the IL-27 cytokine subunit p28 (IL-30) via a gp130 protein receptor homodimer. J. Biol. Chem. 288, 4346–4354.10.1074/jbc.M112.432955Search in Google Scholar

Gibson, D., Montero, M., Ropeleski, M., Bergstrom, K., Ma, C., Ghosh, S., Merkens, H., Huang, J., Månsson, L., Sham, H., et al. (2010). Interleukin-11 reduces TLR4-induced colitis in TLR2-deficient mice and restores intestinal STAT3 signaling. Gastroenterology 139, 1277–1288.10.1053/j.gastro.2010.06.057Search in Google Scholar

Gravallese, E.M., Manning, C., Tsay, A., Naito, A., Pan, C., Amento, E., and Goldring, S.R. (2000). Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 43, 250–258.10.1002/1529-0131(200002)43:2<250::AID-ANR3>3.0.CO;2-PSearch in Google Scholar

Grivennikov, S., Karin, E., Teric, J., Mucida, D., Yu, G.Y., Vallabhapurapu, S., Scheller, J., Rose-John, S., Cheroutre, H., Eckmann, L., et al. (2009). IL-6 and STAT3 are required for survival of intestinal epithelial cells and development of colitis associated cancer. Cancer Cell 15, 103–113.10.1016/j.ccr.2009.01.001Search in Google Scholar

Haan, C., Rolvering, C., Raulf, F., Kapp, M., Drückes, P., Thoma, G., Behrmann, I., and Zerwes, H.G. (2011). Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem. Biol. 18, 314–323.10.1016/j.chembiol.2011.01.012Search in Google Scholar

Hammer, R., Maika, S., Richardson, J., Tang, J., and Taurog, J. (1990). Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 63, 1099–1112.10.1016/0092-8674(90)90512-DSearch in Google Scholar

Hashimoto, J., Garnero, P., van der Heijde, D., Miyasaka, N., Yamamoto, K., Kawai, S., Takeuchi, T., Yoshikawa, H., and Nishimoto, N. (2011). Humanized anti-interleukin-6-receptor antibody (tocilizumab) monotherapy is more effective in slowing radiographic progression in patients with rheumatoid arthritis at high baseline risk for structural damage evaluated with levels of biomarkers, radiography, and BMI: data from the SAMURAI study. Mod. Rheumatol. 21, 10–15.10.3109/s10165-010-0325-3Search in Google Scholar

Hawkins, G.A., Robinson, M.B., Hastie, A.T., Li, X., Li, H., Moore, W.C., Howard, T.D., Busse, W.W., Erzurum, S.C., Wenzel, S.E., et al. (2012). The IL6R variation Asp(358)Ala is a potential modifier of lung function in subjects with asthma. J. Allergy Clin. Immunol. 130, 510–515.10.1016/j.jaci.2012.03.018Search in Google Scholar PubMed PubMed Central

Heinrich, P., Behrmann, I., Haan, S., Hermanns, H., Müller-Newen, G., and Schaper, F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20.10.1042/bj20030407Search in Google Scholar

Hirota, H., Yoshida, K., Kishimoto, T., and Taga, T. (1995). Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc. Natl. Acad. Sci. USA 92, 4862.10.1073/pnas.92.11.4862Search in Google Scholar PubMed PubMed Central

Hosokawa, T., Kusugami, K., Ina, K., Ando, T., Shinoda, M., Imada, A., Ohsuga, M., Sakai, T., Matsuura, T., Ito, K., et al. (1999). Interleukin-6 and soluble interleukin-6 receptor in the colonic mucosa of inflammatory bowel disease. J. Gastroenterol. Hepatol. 14, 987–996.10.1046/j.1440-1746.1999.01989.xSearch in Google Scholar PubMed

Howlett, M., Giraud, A., Lescesen, H., Jackson, C., Kalantzis, A., Van Driel, I., Robb, L., Van der Hoek, M., Ernst, M., Minamoto, T., et al. (2009). The interleukin-6 family cytokine interleukin-11 regulates homeostatic epithelial cell turnover and promotes gastric tumor development. Gastroenterology 136, 967–977.10.1053/j.gastro.2008.12.003Search in Google Scholar PubMed

Ito, H., Takazoe, M., Fukuda, Y., Hibi, T., Kusugami, K., Andoh, A., Matsumoto, T., Yamamura, T., Azuma, J., Nishimoto, N., et al. (2004). A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology 126, 989–996.10.1053/j.gastro.2004.01.012Search in Google Scholar PubMed

Jackson, C.B., Judd, L.M., Menheniott, T.R., Kronborg, I., Dow, C., Yeomans, N.D., Boussioutas, A., Robb, L., and Giraud, A.S. (2007). Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J. Pathol. 213, 140–151.10.1002/path.2218Search in Google Scholar PubMed

Jiang, J.K., Ghoreschi, K., Deflorian, F., Chen, Z., Perreira, M., Pesu, M., Smith, J., Nguyen, D.T., Liu, E.H., Leister, W., et al. (2008). Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550). J. Med. Chem. 51, 8012–8018.10.1021/jm801142bSearch in Google Scholar PubMed PubMed Central

Jones, S.A., Scheller, J., and Rose-John, S. (2011). Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J. Clin. Invest. 121, 3375–3383.10.1172/JCI57158Search in Google Scholar PubMed PubMed Central

Jostock, T., Mullberg, J., Ozbek, S., Atreya, R., Blinn, G., Voltz, N., Fischer, M., Neurath, M.F., and Rose-John, S. (2001). Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem. 268, 160–167.10.1046/j.1432-1327.2001.01867.xSearch in Google Scholar

Kabir, S. and Daar, G.A. (1995). Serum levels of interleukin-1, interleukin-6 and tumour necrosis factor-α in patients with gastric carcinoma. Cancer Lett. 95, 207–212.10.1016/0304-3835(95)03895-4Search in Google Scholar

Kanda, T., Inoue, M., Kotajima, N., Fujimaki, S., Hoshino, Y., Kurabayashi, M., Kobayashi, I., and Tamura, J. (2000). Circulating interleukin-6 and interleukin-6 receptors in patients with acute and recent myocardial infarction. Cardiology 93, 191–196.10.1159/000007025Search in Google Scholar

Kang, Y., Siegel, P., Shu, W., Drobnjak, M., Kakonen, S., Cordón-Cardo, C., Guise, T., and Massagué, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549.10.1016/S1535-6108(03)00132-6Search in Google Scholar

Kiessling, S., Muller-Newen, G., Leeb, S., Hausmann, M., Rath, H., Strater, J., Spottl, T., Schlottmann, K., Grossmann, J., Montero-Julian, F., et al. (2004). Functional expression of the interleukin-11 receptor alpha-chain and evidence of antiapoptotic effects in human colonic epithelial cells. J. Biol. Chem. 279, 10304–10315.10.1074/jbc.M312757200Search in Google Scholar

Kimura, R., Maeda, M., Arita, A., Oshima, Y., Obana, M., Ito, T., Yamamoto, Y., Mohri, T., Kishimoto, T., Kawase, I., et al. (2007). Identification of cardiac myocytes as the target of interleukin 11, a cardioprotective cytokine. Cytokine 38, 107–115.10.1016/j.cyto.2007.05.011Search in Google Scholar

Kitamura, H., Kawata, H., Takahashi, F., Higuchi, Y., Furuichi, T., and Ohkawa, H. (1995). Bone marrow neutrophilia and suppressed bone turnover in human interleukin-6 transgenic mice. A cellular relationship among hematopoietic cells, osteoblasts, and osteoclasts mediated by stromal cells in bone marrow. Am. J. Pathol. 147, 1682–1692.Search in Google Scholar

Kobara, M., Noda, K., Kitamura, M., Okamoto, A., Shiraishi, T., Toba, H., Matsubara, H., and Nakata, T. (2010). Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovas. Res. 87, 424–430.10.1093/cvr/cvq078Search in Google Scholar

Kong, Y.Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., Morony, S., Capparelli, C., Li, J., Elliott, R., McCabe, S., et al. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309.10.1038/46303Search in Google Scholar

Kotake, S., Udagawa, N., Hakoda, M., Mogi, M., Yano, K., Tsuda, E., Takahashi, K., Furuya, T., Ishiyama, S., Kim, K.J., et al. (2001). Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum. 44, 1003–1012.10.1002/1529-0131(200105)44:5<1003::AID-ANR179>3.0.CO;2-#Search in Google Scholar

Ladenburger, A., Seehase, M., Kramer, B., Thomas, W., Wirbelauer, J., Speer, C., and Kunzmann, S. (2010). Glucocorticoids potentiate IL-6-induced SP-B expression in H441 cells by enhancing the JAK-STAT signaling pathway. American Journal of Physiology. Lung Cell Mol. Physiol. 299, 84.10.1152/ajplung.00055.2010Search in Google Scholar

Lee, C., Hartl, D., Matsuura, H., Dunlop, F., Scotney, P., Fabri, L., Nash, A., Chen, N.-Y., Tang, C.-Y., Chen, Q., et al. (2008). Endogenous IL-11 signaling is essential in Th2- and IL-13-induced inflammation and mucus production. Am. J. Respir. Cell Mol. Biol. 39, 739–746.10.1165/rcmb.2008-0053OCSearch in Google Scholar

Lewis, V., Ozawa, M., Deavers, M., Wang, G., Shintani, T., Arap, W., and Pasqualini, R. (2009). The interleukin-11 receptor α as a candidate ligand-directed target in osteosarcoma: consistent data from cell lines, orthotopic models, and human tumor samples. Cancer Res. 69, 1995–1999.10.1158/0008-5472.CAN-08-4845Search in Google Scholar

Liao, W., Lin, J.-X., Wang, L., Li, P., and Leonard, W. (2011). Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 551–559.10.1038/ni.2030Search in Google Scholar

Litt, M.R., Jeremy, R.W., Weisman, H.F., Winkelstein, J.A., and Becker, L.C. (1989). Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation 80, 1816–1827.10.1161/01.CIR.80.6.1816Search in Google Scholar

Lu, Z.Y., Brochier, J., Wijdenes, J., Brailly, H., Bataille, R., and Klein, B. (1992). High amounts of circulating interleukin (IL)-6 in the form of monomeric immune complexes during anti-IL-6 therapy. Towards a new methodology for measuring overall cytokine production in human in vivo. Eur. J. Biochem. 22, 2819–2824.10.1002/eji.1830221110Search in Google Scholar

Lu, W., Gong, D., Bar-Sagi, D., and Cole, P.A. (2001). Site-specific incorporation of a phosphotyrosine mimetic reveals a role for tyrosine phosphorylation of SHP-2 in cell signaling. Mol. Cell 8, 759–769.10.1016/S1097-2765(01)00369-0Search in Google Scholar

Lu, W., Shen, K., and Cole, P.A. (2003). Chemical dissection of the effects of tyrosine phosphorylation of SHP-2. Biochemistry 42, 5461–5468.10.1021/bi0340144Search in Google Scholar

Lupardus, P.J., Skiniotis, G., Rice, A.J., Thomas, C., Fischer, S., Walz, T., and Garcia, K.C. (2011). Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Structure 19, 45–55.10.1016/j.str.2010.10.010Search in Google Scholar

Marini, M., Vittori, E., Hollemborg, J., and Mattoli, S. (1992). Expression of the potent inflammatory cytokines, granulocyte-macrophage-colony-stimulating factor and interleukin-6 and interleukin-8, in bronchial epithelial cells of patients with asthma. J. Allergy Clin. Immunol. 89, 1001–1009.10.1016/0091-6749(92)90223-OSearch in Google Scholar

Matadeen, R., Hon, W.C., Heath, J.K., Jones, E.Y., and Fuller, S. (2007). The dynamics of signal triggering in a gp130-receptor complex. Structure 15, 441–448.10.1016/j.str.2007.02.006Search in Google Scholar PubMed PubMed Central

McFarland-Mancini, M.M., Funk, H.M., Paluch, A.M., Zhou, M., Giridhar, P.V., Mercer, C.A., Kozma, S.C., and Drew, A.F. (2010). Differences in wound healing in mice with deficiency of IL-6 versus IL-6 receptor. J. Immunol. 184, 7219–7228.10.4049/jimmunol.0901929Search in Google Scholar

Meléndez, G.C., McLarty, J.L., Levick, S.P., Du, Y., Janicki, J.S., and Brower, G.L. (2010). Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56, 225–231.10.1161/HYPERTENSIONAHA.109.148635Search in Google Scholar

Minshall, E., Chakir, J., Laviolette, M., Molet, S., Zhu, Z., Olivenstein, R., Elias, J., and Hamid, Q. (2000). IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J. Allergy Clin. Immunol. 105, 232–238.10.1016/S0091-6749(00)90070-8Search in Google Scholar

Mir, S.A., Chatterjee, A., Mitra, A., Pathak, K., Mahata, S.K., and Sarkar, S. (2012). Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart. J. Biol. Chem. 287, 2666–2677.10.1074/jbc.M111.246173Search in Google Scholar PubMed PubMed Central

Mitsuyama, K., Sasaki, E., Toyonaga, A., Ikeda, H., Tsuruta, O., Irie, A., Arima, N., Oriishi, T., Harada, K., Fujisaki, K., et al. (1991). Colonic mucosal interleukin-6 in inflammatory bowel disease. Digestion 50, 104–111.10.1159/000200747Search in Google Scholar PubMed

Mitsuyama, K., Toyonaga, A., Sasaki, E., Ishida, O., Ikeda, H., Tsuruta, O., Harada, K., Tateishi, H., Nishiyama, T., and Tanikawa, K. (1995). Soluble interleukin-6 receptors in inflammatory bowel disease: relation to circulating interleukin-6. Gut 36, 45–49.10.1136/gut.36.1.45Search in Google Scholar PubMed PubMed Central

Mitsuyama, K., Matsumoto, S., Rose-John, S., Suzuki, A., Hara, T., Tomiyasu, N., Handa, K., Tsuruta, O., Funabashi, H., Scheller, J., et al. (2006). STAT3 activation via interleukin-6 trans-signaling contributes to ileitis in SAMP1/Yit mice. Gut 55, 1263–1269.10.1136/gut.2005.079343Search in Google Scholar PubMed PubMed Central

Mohr, A., Chatain, N., Domoszlai, T., Rinis, N., Sommerauer, M., Vogt, M., and Müller-Newen, G. (2012). Dynamics and non-canonical aspects of JAK/STAT signalling. Eur. J. Cell Biol. 91, 524–532.10.1016/j.ejcb.2011.09.005Search in Google Scholar PubMed

Montero-Julian, F.A. (2001). The soluble IL-6 receptors: serum levels and biological function. Cell. Mol. Biol. 47, 583–597.Search in Google Scholar

Müller-Newen, G., Küster, A., Hemmann, U., Keul, R., Horsten, U., Martens, A., Graeve, L., Wijdenes, J., and Heinrich, P.C. (1998). Soluble IL-6 receptor potentiates the antagonistic activity of soluble gp130 on IL-6 responses. J. Immunol. 161, 6347–6355.10.4049/jimmunol.161.11.6347Search in Google Scholar

Nakayama, T., Yoshizaki, A., Izumida, S., Suehiro, T., Miura, S., Uemura, T., Yakata, Y., Shichijo, K., Yamashita, S., and Sekin, I. (2007). Expression of interleukin-11 (IL-11) and IL-11 receptor α in human gastric carcinoma and IL-11 upregulates the invasive activity of human gastric carcinoma cells. Int. J. Oncol. 30, 825–833.10.3892/ijo.30.4.825Search in Google Scholar

Necula, L.G., Chivu-Economescu, M., Stanciulescu, E.L., Bleotu, C., Dima, S.O., Alexiu, I., Dumitru, A., Constantinescu, G., Popescu, I., and Diaconu, C.C. (2012). IL-6 and IL-11 as markers for tumor aggressiveness and prognosis in gastric adenocarcinoma patients without mutations in Gp130 subunits. J. Gastrointestin. Liver Dis. 21, 23–29.Search in Google Scholar

Nieminen, P., Morgan, N., Fenwick, A., Parmanen, S., Veistinen, L., Mikkola, M., van der Spek, P., Giraud, A., Judd, L., Arte, S., et al. (2011). Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am. J. Hum. Genet. 89, 67–81.10.1016/j.ajhg.2011.05.024Search in Google Scholar PubMed PubMed Central

Nishimoto, N., Kanakura, Y., Aozasa, K., Johkoh, T., Nakamura, M., Nakano, S., Nakano, N., Ikeda, Y., Sasaki, T., Nishioka, K., et al. (2005). Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106, 2627–2623.10.1182/blood-2004-12-4602Search in Google Scholar PubMed

Nishimoto, N., Terao, K., Mima, T., Nakahara, H., Takagi, N., and Kakehi, T. (2008). Mechanisms and pathologic significances in increase in serum interleukin-6 (IL-6) and soluble IL-6 receptor after administration of an anti-IL-6 receptor antibody, tocilizumab, in patients with rheumatoid arthritis and Castleman disease. Blood 112, 3959–3964.10.1182/blood-2008-05-155846Search in Google Scholar PubMed

Nowell, M.A., Richards, P.J., Horiuchi, S., Yamamoto, N., Rose-John, S., Topley, N., Williams, A.S., and Jones, S.A. (2003). Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. J. Immunol. 171, 3202–3209.10.4049/jimmunol.171.6.3202Search in Google Scholar PubMed

Nowell, M.A., Williams, A.S., Carty, S.A., Scheller, J., Hayes, A.J., Jones, G.W., Richards, P.J., Slinn, S., Ernst, M., Jenkins, B.J., et al. (2009). Therapeutic targeting of IL-6 trans signaling counteracts STAT3 control of experimental inflammatory arthritis. J. Immunol. 182, 613–622.10.4049/jimmunol.182.1.613Search in Google Scholar PubMed

Obana, M., Maeda, M., Takeda, K., Hayama, A., Mohri, T., Yamashita, T., Nakaoka, Y., Komuro, I., Takeda, K., Matsumiya, G., et al. (2010). Therapeutic activation of signal transducer and activator of transcription 3 by interleukin-11 ameliorates cardiac fibrosis after myocardial infarction. Circulation 121, 684–691.10.1161/CIRCULATIONAHA.109.893677Search in Google Scholar PubMed

Obana, M., Miyamoto, K., Murasawa, S., Iwakura, T., Hayama, A., Yamashita, T., Shiragaki, M., Kumagai, S., Miyawaki, A., Takewaki, K., et al. (2012). Therapeutic administration of IL-11 exhibits the postconditioning effects against ischemia-reperfusion injury via STAT3 in the heart. Am. J. Physiol.-Heart C. 303, 77.10.1152/ajpheart.00060.2012Search in Google Scholar PubMed

Onnis, B., Fer, N., Rapisarda, A., Perez, V.S., and Melillo, G. (2013). Autocrine production of IL-11 mediates tumorigenicity in hypoxic cancer cells. J. Clin. Invest. 123, 1615–1629.10.1172/JCI59623Search in Google Scholar PubMed PubMed Central

O’Shea, J., Kontzias, A., Yamaoka, K., Tanaka, Y., and Laurence, A. (2013). Janus kinase inhibitors in autoimmune diseases. Annals Rheum. Dis. 72 (Suppl 2), ii111–ii115.10.1136/annrheumdis-2012-202576Search in Google Scholar PubMed PubMed Central

Pack, R.J., Al-Ugaily, L.H., and Morris, G. (1981). The cells of the tracheobronchial epithelium of the mouse: a quantitative light and electron microscope study. J. Anat. 132, 71–84.Search in Google Scholar

Palmqvist, P., Persson, E., Conaway, H.H., and Lerner, U.H. (2002). IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-κB ligand, osteoprotegerin, and receptor activator of NF-κB in mouse calvariae. J. Immunol. 169, 3353–3362.10.4049/jimmunol.169.6.3353Search in Google Scholar PubMed

Pasare, C. and Medzhitov, R. (2003). Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036.10.1126/science.1078231Search in Google Scholar PubMed

Peterson, R., Wang, L., Albert, L., Keith, J., and Dorner, A. (1998). Molecular effects of recombinant human interleukin-11 in the HLA-B27 rat model of inflammatory bowel disease. Lab. Invest. 78, 1503–1512.Search in Google Scholar

Pflanz, S., Tacken, I., Grötzinger, J., Jacques, Y., Minvielle, S., Dahmen, H., Heinrich, P.C., and Muller-Newen, G. (1999). A fusion protein of interleukin-11 and soluble interleukin-11 receptor acts as a superagonist on cells expressing gp130. FEBS Lett. 450, 117–122.10.1016/S0014-5793(99)00477-9Search in Google Scholar

Poli, V., Balena, R., Fattori, E., Markatos, A., Yamamoto, M., Tanaka, H., Ciliberto, G., Rodan, G. A., and Costantini, F. (1994). Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 13, 1189–1196.10.1002/j.1460-2075.1994.tb06368.xSearch in Google Scholar

Putoczki, T. and Ernst, M. (2010). More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J. Leukoc. Biol. 88, 1109–1117.10.1189/jlb.0410226Search in Google Scholar

Rose-John, S. and Heinrich, P.C. (1994). Soluble receptors for cytokines and growth factors: generation and biological function. Biochem. J. 300, 281–290.10.1042/bj3000281Search in Google Scholar

Rose-John, S., Schooltink, H., Lenz, D., Hipp, E., Dufhues, G., Schmitz, H., Schiel, X., Hirano, T., Kishimoto, T., and Heinrich, P. (1990). Studies on the structure and regulation of the human hepatic interleukin-6 receptor. Eur. J. Biochem. 190, 79–83.10.1111/j.1432-1033.1990.tb15548.xSearch in Google Scholar

Rose-John, S., Waetzig, G.H., Scheller, J., Grotzinger, J., and Seegert, D. (2007). The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin. Ther. Targets 11, 613–624.10.1517/14728222.11.5.613Search in Google Scholar

Samavedam, U., Kalies, K., Scheller, J., Sadeghi, H., Gupta, Y., Jonkman, M., Schmidt, E., Westermann, J., Zillikens, D., Rose-John, S., et al. (2013). Recombinant IL-6 treatment protects mice from organ specific autoimmune disease by IL-6 classical signalling-dependent IL-1ra induction. J. Autoimmun. 40, 74–85.10.1016/j.jaut.2012.08.002Search in Google Scholar

Sandborn, W., Ghosh, S., Panes, J., Vranic, I., Su, C., Rousell, S., Niezychowski, W., and Study, A.I. (2012). Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N. Engl. J. Med. 367, 616–624.10.1056/NEJMoa1112168Search in Google Scholar

Sands, B., Bank, S., Sninsky, C., Robinson, M., Katz, S., Singleton, J., Miner, P., Safdi, M., Galandiuk, S., Hanauer, S., et al. (1999). Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn’s disease. Gastroenterology 117, 58–64.10.1016/S0016-5085(99)70550-0Search in Google Scholar

Sands, B., Winston, B., Salzberg, B., Safdi, M., Barish, C., Wruble, L., Wilkins, R., Shapiro, M., Schwertschlag, U., and group, R.-C. s. S. (2002). Randomized, controlled trial of recombinant human interleukin-11 in patients with active Crohn’s disease. Aliment. Pharmacol. Ther. 16, 399–406.10.1046/j.1365-2036.2002.01179.xSearch in Google Scholar PubMed

Sawa, Y., Ichikawa, H., Kagisaki, K., Ohata, T., and Matsuda, H. (1998). Interleukin-6 derived from hypoxic myocytes promotes neutrophil-mediated reperfusion injury in myocardium. J. Thorac. Cardiovasc. Surg. 116, 511–517.10.1016/S0022-5223(98)70018-2Search in Google Scholar

Scheller, J. and Rose-John, S. (2012). The interleukin 6 pathway and atherosclerosis. Lancet 380, 338.10.1016/S0140-6736(12)61246-XSearch in Google Scholar

Scheller, J., Schuster, B., Holscher, C., Yoshimoto, T., and Rose-John, S. (2005). No inhibition of IL-27 signaling by soluble gp130. Biochem. Biophys. Res. Commun. 326, 724–728.10.1016/j.bbrc.2004.11.098Search in Google Scholar PubMed

Scheller, J., Chalaris, A., Garbers, C., and Rose-John, S. (2011a). ADAM17: a molecular switch controlling inflammatory and regenerative responses. Trends Immunol. 32, 380–387.10.1016/j.it.2011.05.005Search in Google Scholar PubMed

Scheller, J., Chalaris, A., Schmidt-Arras, D., and Rose-John, S. (2011b). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813, 878–888.10.1016/j.bbamcr.2011.01.034Search in Google Scholar PubMed

Schuett, H., Oestreich, R., Waetzig, G.H., Annema, W., Luchtefeld, M., Hillmer, A., Bavendiek, U., von Felden, J., Divchev, D., Kempf, T., et al. (2012). Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 281–290.10.1161/ATVBAHA.111.229435Search in Google Scholar PubMed

Schuster, B., Kovaleva, M., Sun, Y., Regenhard, P., Matthews, V., Grötzinger, J., Rose-John, S., and Kallen, K.J. (2003). Signaling of human ciliary neurotrophic factor (CNTF) revisited. The interleukin-6 receptor can serve as an α-receptor for CTNF. J. Biol. Chem. 278, 9528–9535.10.1074/jbc.M210044200Search in Google Scholar PubMed

Snyers, L., De Wit, L., and Content, J. (1990). Glucocorticoid up-regulation of high-affinity interleukin 6 receptors on human epithelial cells. Proc. Natl. Acad. Sci. USA 87, 2838–2842.10.1073/pnas.87.7.2838Search in Google Scholar PubMed PubMed Central

Suthaus, J., Stuhlmann-Laeisz, C., Tompkins, V.S., Rosean, T.R., Klapper, W., Tosato, G., Janz, S., Scheller, J., and Rose-John, S. (2012). HHV8 encoded viral IL-6 collaborates with mouse IL-6 in MCD-like development in mice. Blood 119, 5173–5181.10.1182/blood-2011-09-377705Search in Google Scholar PubMed PubMed Central

Takeuchi, Y., Watanabe, S., Ishii, G., Takeda, S., Nakayama, K., Fukumoto, S., Kaneta, Y., Inoue, D., Matsumoto, T., Harigaya, K., et al. (2002). Interleukin-11 as a stimulatory factor for bone formation prevents bone loss with advancing age in mice. J. Biol. Chem. 277, 49011–49018.10.1074/jbc.M207804200Search in Google Scholar PubMed

Tanaka, T., Narazaki, M., and Kishimoto, T. (2012). Therapeutic targeting of the interleukin-6 receptor. Annu. Rev. Pharmacol. Toxicol. 52, 199–219.10.1146/annurev-pharmtox-010611-134715Search in Google Scholar PubMed

Tang, W., Geba, G., Zheng, T., Ray, P., Homer, R., Kuhn, C., Flavell, R., and Elias, J. (1996). Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction. J. Clin. Invest. 98, 2845–2853.10.1172/JCI119113Search in Google Scholar PubMed PubMed Central

Tang, L.P., Cho, C.H., Hui, W.M., Huang, C., Chu, K.M., Xia, H.H., Lam, S.K., Rashid, A., Wong, B.C., and Chan, A.O. (2006). An inverse correlation between Interleukin-6 and select gene promoter methylation in patients with gastric cancer. Digestion 74, 85–90.10.1159/000097623Search in Google Scholar PubMed

Tato, C.M. and Cua, D.J. (2008). SnapShot: Cytokines I. Cell 132, 324.10.1016/j.cell.2008.01.001Search in Google Scholar PubMed

Tebbutt, N., Giraud, A., Inglese, M., Jenkins, B., Waring, P., Clay, F., Malki, S., Alderman, B., Grail, D., Hollande, F., et al. (2002). Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat. Med. 8, 1089–1097.10.1038/nm763Search in Google Scholar PubMed

Thabard, W., Collette, M., Mellerin, M.P., Puthier, D., Barillé, S., Bataille, R., and Amiot, M. (2001). IL-6 upregulates its own receptor on some human myeloma cell lines. Cytokine 14, 352–356.10.1006/cyto.2001.0911Search in Google Scholar PubMed

Underhill-Day, N., McGovern, L., Karpovich, N., Mardon, H., Barton, V., and Heath, J. (2003). Functional characterization of W147A: a high-affinity interleukin-11 antagonist. Endocrinology 144, 3406–3414.10.1210/en.2002-0144Search in Google Scholar PubMed PubMed Central

van Vollenhoven, R., Fleischmann, R., Cohen, S., Lee, E., García Meijide, J., Wagner, S., Forejtova, S., Zwillich, S., Gruben, D., Koncz, T., et al. (2012). Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367, 508–519.10.1056/NEJMoa1112072Search in Google Scholar PubMed

Waetzig, G.H. and Rose-John, S. (2012). Hitting a complex target: an update on interleukin-6 trans-signalling. Expert Opin. Ther. Targets 16, 225–236.10.1517/14728222.2012.660307Search in Google Scholar PubMed

Walsh, N.C., Crotti, T.N., Goldring, S.R., and Gravallese, E.M. (2005). Rheumatic diseases: the effects of inflammation on bone. Immunol. Rev. 208, 228–251.10.1111/j.0105-2896.2005.00338.xSearch in Google Scholar PubMed

Wang, J., Homer, R., Hong, L., Cohn, L., Lee, C., Jung, S., and Elias, J. (2000). IL-11 selectively inhibits aeroallergen-induced pulmonary eosinophilia and Th2 cytokine production. J. Immunol. 165, 2222–2231.10.4049/jimmunol.165.4.2222Search in Google Scholar PubMed

Williams, W., Scherle, P., Shi, J., Newton, R., McKeever, E., Fridman, J., Burn, T., Vaddi, K., Levy, R., and Moreland, L. (2008). A randomized placebo-controlled study of INCB018424, a selective Janus kinase 1 & 2 (JAK1 & 2) inhibitor in rheumatoid arthritis (RA). Arthritis Rheum. 58, S431.Search in Google Scholar

Wong, P.K., Quinn, J.M., Sims, N.A., van Nieuwenhuijze, A., Campbell, I.K., and Wicks, I.P. (2006). Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum. 54, 158–168.10.1002/art.21537Search in Google Scholar PubMed

Wu, C.W., Wang, S.R., Chao, M.F., Wu, T.C., Lui, W.Y., P’eng, F.K., and Chi, C.W. (1996). Serum interleukin-6 levels reflect disease status of gastric cancer. Am. J. Gastroenterol. 91, 1417–1422.Search in Google Scholar

Xu, Y., Kershaw, N.J., Luo, C.S., Soo, P., Pocock, M.J., Czabotar, P.E., Hilton, D.J., Nicola, N.A., Garrett, T.P., and Zhang, J.G. (2010). Crystal structure of the entire ectodomain of gp130: insights into the molecular assembly of the tall cytokine receptor complexes. J. Biol. Chem. 285, 21214–21218.10.1074/jbc.C110.129502Search in Google Scholar PubMed PubMed Central

Yamamoto, I., Yoshizaki, K., Kishimoto, T., and Ito, H. (2000). IL-6 is required for the development of Th1 cell-mediated murine colitis. J. Immunol. 164, 4878–4882.10.4049/jimmunol.164.9.4878Search in Google Scholar PubMed

Yamauchi-Takihara, K., Ihara, Y., Ogata, A., Yoshizaki, K., Azuma, J., and Kishimoto, T. (1995). Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 91, 1520–1524.10.1161/01.CIR.91.5.1520Search in Google Scholar

Yin, J., Selander, K., Chirgwin, J., Dallas, M., Grubbs, B., Wieser, R., Massagué, J., Mundy, G., and Guise, T. (1999). TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206.10.1172/JCI3523Search in Google Scholar PubMed PubMed Central

Yokoyama, A., Kohno, N., Fujino, S., Hamada, H., Inoue, Y., Fujioka, S., Ishida, S., and Hiwada, K. (1995). Circulating interleukin-6 levels in patients with bronchial asthma. Am. J. Respir. Crit. Care Med. 151, 1354–1358.10.1164/ajrccm.151.5.7735584Search in Google Scholar PubMed

Yoshitake, F., Itoh, S., Narita, H., Ishihara, K., and Ebisu, S. (2008). Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-κB signaling pathways. J. Biol. Chem. 283, 11535–11540.10.1074/jbc.M607999200Search in Google Scholar PubMed

Yoshizaki, A., Nakayama, T., Yamazumi, K., Yakata, Y., Taba, M., and Sekine, I. (2006). Expression of interleukin (IL)-11 and IL-11 receptor in human colorectal adenocarcinoma: IL-11 up-regulation of the invasive and proliferative activity of human colorectal carcinoma cells. Int. J. Oncol. 29, 869–876.10.3892/ijo.29.4.869Search in Google Scholar

Zhang, W., Tsuda, M., Yang, G.X., Tsuneyama, K., Rong, G., Ridgway, W.M., Ansari, A.A., Flavell, R.A., Coppel, R.L., Lian, Z.X., et al. (2010). Deletion of interleukin-6 in mice with the dominant negative form of transforming growth factor beta receptor II improves colitis but exacerbates autoimmune cholangitis. Hepatology 52, 215–222.10.1002/hep.23664Search in Google Scholar PubMed PubMed Central

Received: 2013-5-2
Accepted: 2013-5-30
Published Online: 2013-06-04
Published in Print: 2013-09-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2013-0166/html
Scroll to top button