Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 3, 2014

Novel intracellular functions of apolipoproteins: the ApoO protein family as constituents of the Mitofilin/MINOS complex determines cristae morphology in mitochondria

  • Sebastian Koob

    Sebastian Koob obtained his Diploma in Biology at the TU Darmstadt in 2009. He is now a PhD student in the group of Andreas Reichert working on the molecular architecture and function of the mammalian Mitofilin/MINOS complex. Since 2013 he is a member of the International Max-Planck Research School (IMPReS) on Structure and Function of Biological Membranes.

    and Andreas S. Reichert

    Andreas S. Reichert is Professor for Mitochondrial Biology at the Goethe University Frankfurt am Main and principal investigator at the Cluster of Excellence for Macromolecular Complexes Frankfurt. He studied Biochemistry at the University of Bayreuth, Germany, and at the University of Delaware, USA. In 1999 he obtained his PhD from the University of Munich (LMU) working with Svante Pääbo and Mario Mörl. After a Post-doc at the Max-Planck-Institute for Evolutionary Anthropology, Leipzig, he joined the lab of Walter Neupert in Munich where he worked as a group leader from 2000 to 2007. His main interests are to understand the molecular mechanisms of (1) mitochondrial membrane dynamics, (2) mitochondrial quality control, and (3) how these processes contribute to ageing and the pathogenesis of human diseases.

    EMAIL logo
From the journal Biological Chemistry

Abstract

Mitochondria exist in a highly dynamic network that is constantly altered by fusion and fission events depending on various factors such as cellular bioenergetic state and cell cycle. Next to this dynamic nature of the organelle, its cristae membrane also undergoes drastic morphological changes upon physiological or pathological alterations. The Mitofilin/mitochondrial inner membrane organizing system (MINOS) complex was recently reported to ensure mitochondrial architecture and crista junction integrity. Several subunits of this complex are linked to a diverse set of neurological human disorders. Recently, two apolipoproteins, ApoO (APOO) and ApoO-like (APOOL) were suggested to represent constituents of the mammalian Mitofilin/MINOS complex. APOOL was shown to bind the mitochondrial phospholipid cardiolipin (CL) and to interact physically with this complex. In this review we highlight the current view on the mammalian Mitofilin/MINOS complex and focus on APOOL and the role of CL in determining cristae morphology. We will discuss possible functions of the Mitofilin/MINOS complex on lipid transport, on assembly of respiratory supercomplexes, on F1FO-ATP synthase organization, on contact site formation, and on trapping CL within the cristae subcompartment.


Corresponding author: Andreas S. Reichert, Mitochondrial Biology, Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Str. 15, D-60438 Frankfurt/Main, Germany; and Mitochondriale Biologie, Zentrum für Molekulare Medizin, Goethe Universität, Max-von-Laue-Str. 15, D-60438 Frankfurt/Main, Germany, e-mail:

About the authors

Sebastian Koob

Sebastian Koob obtained his Diploma in Biology at the TU Darmstadt in 2009. He is now a PhD student in the group of Andreas Reichert working on the molecular architecture and function of the mammalian Mitofilin/MINOS complex. Since 2013 he is a member of the International Max-Planck Research School (IMPReS) on Structure and Function of Biological Membranes.

Andreas S. Reichert

Andreas S. Reichert is Professor for Mitochondrial Biology at the Goethe University Frankfurt am Main and principal investigator at the Cluster of Excellence for Macromolecular Complexes Frankfurt. He studied Biochemistry at the University of Bayreuth, Germany, and at the University of Delaware, USA. In 1999 he obtained his PhD from the University of Munich (LMU) working with Svante Pääbo and Mario Mörl. After a Post-doc at the Max-Planck-Institute for Evolutionary Anthropology, Leipzig, he joined the lab of Walter Neupert in Munich where he worked as a group leader from 2000 to 2007. His main interests are to understand the molecular mechanisms of (1) mitochondrial membrane dynamics, (2) mitochondrial quality control, and (3) how these processes contribute to ageing and the pathogenesis of human diseases.

We thank Miguel Barrera for providing the exemplary electron micrograph shown in Figure 1. This work was supported by the Cluster of Excellence Frankfurt Macromolecular Complexes at the Goethe University Frankfurt DFG project EXC 115 and the International Max-Planck research school (IMPReS) on “Structure and Function of Biological Membranes”.

References

Acehan, D., Malhotra, A., Xu, Y., Ren, M., Stokes, D.L., and Schlame, M. (2011). Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys. J. 100, 2184–2192.10.1016/j.bpj.2011.03.031Search in Google Scholar

Agier, V., Oliviero, P., Laine, J., L’Hermitte-Stead, C., Girard, S., Fillaut, S., Jardel, C., Bouillaud, F., Bulteau, A.L., and Lombes, A. (2012). Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations. Biochim. Biophys. Acta 1822, 1570–1580.10.1016/j.bbadis.2012.07.002Search in Google Scholar

Alkhaja, A.K., Jans, D.C., Nikolov, M., Vukotic, M., Lytovchenko, O., Ludewig, F., Schliebs, W., Riedel, D., Urlaub, H., Jakobs, S., et al. (2012). MINOS1 is a conserved component of mitofilin complexes and required for mitochondrial function and cristae organization. Mol. Biol. Cell 23, 247–257.10.1091/mbc.e11-09-0774Search in Google Scholar

An, J., Shi, J., He, Q., Lui, K., Liu, Y., Huang, Y., and Sheikh, M.S. (2012). CHCM1/CHCHD6, novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology. J. Biol. Chem. 287, 7411–7426.10.1074/jbc.M111.277103Search in Google Scholar

Aprikyan, A.A. and Khuchua, Z. (2013). Advances in the understanding of Barth syndrome. Br. J. Haematol. 161, 330–8.10.1111/bjh.12271Search in Google Scholar

Ardail, D., Lerme, F., and Louisot, P. (1990a). Further characterization of mitochondrial contact sites: effect of short-chain alcohols on membrane fluidity and activity. Biochem. Biophys. Res. Commun. 173, 878–885.10.1016/S0006-291X(05)80868-XSearch in Google Scholar

Ardail, D., Privat, J.P., Egret-Charlier, M., Levrat, C., Lerme, F., and Louisot, P. (1990b). Mitochondrial contact sites. Lipid composition and dynamics. J. Biol. Chem. 265, 18797–18802.10.1016/S0021-9258(17)30583-5Search in Google Scholar

Bazan, S., Mileykovskaya, E., Mallampalli, V.K., Heacock, P., Sparagna, G.C., and Dowhan, W. (2013). Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV. J. Biol. Chem. 288, 401–411.10.1074/jbc.M112.425876Search in Google Scholar PubMed PubMed Central

Becker, T., Bottinger, L., and Pfanner N. (2012). Mitochondrial protein import: from transport pathways to an integrated network. Trends Biochem Sci. 37, 85–91.10.1016/j.tibs.2011.11.004Search in Google Scholar PubMed

Bohnert, N., Wenz, L.S., Zerbes, R.M., Horvath, S.E., Stroud, D.A., von der Malsburg, K., Muller, J.M., Oeljeklaus, S., Perschil, I., Warscheid, B., et al. (2012). Role of MINOS in protein biogenesis of the mitochondrial outer membrane. Mol. Biol. Cell. 23, 3948–3956.10.1091/mbc.e12-04-0295Search in Google Scholar

Bornhövd, C., Vogel, F., Neupert, W., and Reichert, A.S. (2006). Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes. J. Biol. Chem. 281, 13990–138998.10.1074/jbc.M512334200Search in Google Scholar PubMed

Bottinger, L., Horvath, S.E., Kleinschroth, T., Hunte, C., Daum, G., Pfanner, N., and Becker, T. (2012). Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J. Mol Biol. 423, 677–686.10.1016/j.jmb.2012.09.001Search in Google Scholar PubMed PubMed Central

Campanella, M., Casswell, E., Chong, S., Farah, Z., Wieckowski, M.R., Abramov, A.Y., Tinker, A., and Duchen, M.R., (2008). Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor protein, IF1. Cell Metab. 8, 13–25.10.1016/j.cmet.2008.06.001Search in Google Scholar PubMed

Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200.10.1083/jcb.200211046Search in Google Scholar PubMed PubMed Central

Chu, C.T., Ji, J., Dagda, R.K., Jiang, J.F., Tyurina, Y.Y., Kapralov, A.A., Tyurin, V.A., Yanamala, N., Shrivastava, I.H., Mohammadyani, D., et al. (2013). Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205.10.1038/ncb2837Search in Google Scholar PubMed PubMed Central

Cipolat, S., Rudka, T., Hartmann, D., Costa, V., Serneels, L., Craessaerts, K., Metzger, K., Frezza, C., Annaert, W., D’Adamio, L., et al. (2006). Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126, 163–175.10.1016/j.cell.2006.06.021Search in Google Scholar PubMed

Connerth, M., Tatsuta, T., Haag, M., Klecker, T., Westermann, B., and Langer, T (2012). Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science 338, 815–818.10.1126/science.1225625Search in Google Scholar PubMed

Cozzolino, M. and Carri, M.T. (2012). Mitochondrial dysfunction in ALS. Prog. Neurobiol. 97, 54–66.10.1016/j.pneurobio.2011.06.003Search in Google Scholar PubMed

Darshi, M., Mendiola, V.L., Mackey, M.R., Murphy, A.N., Koller, A., Perkins, G.A., Ellisman, M.H., and Taylor, S.S. (2011). ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function. J. Biol. Chem. 286, 2918–2932.10.1074/jbc.M110.171975Search in Google Scholar PubMed PubMed Central

Darshi, M., Trinh, K.N., Murphy, A.N., and Taylor,.S.S, (2012). Targeting and import mechanism of coiled-coil helix coiled-coil helix domain-containing protein 3 (ChChd3) into the mitochondrial intermembrane space. J. Biol. Chem. 287, 39480–39491.10.1074/jbc.M112.387696Search in Google Scholar PubMed PubMed Central

Davies, K.M., Daum, B., Kuhlbrandt, W., Anselmi, C., and Faraldo-Gomez, J., (2012). Structure of the mitochondrial ATP synthase and its role in shaping mitochondria cristae. Microsc. Microanal. 18(Suppl 2), 56–7.10.1017/S1431927612002139Search in Google Scholar

De Pinto, V., Ludwig, O., Krause, J., Benz, R., and Palmieri, F. (1987). Porin pores of mitochondrial outer membranes from high and low eukaryotic cells: biochemical and biophysical characterization. Biochim. Biophys. Acta 894, 109–119.10.1016/0005-2728(87)90180-0Search in Google Scholar

Dudek, J., Cheng, I.F., Balleininger, M., Vaz, F.M., Streckfuss-Bomeke, K., Hubscher, D., Vukotic, M., Wanders, R.J., Rehling, P., and Guan, K. (2013). Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res. 11, 806–819.10.1016/j.scr.2013.05.005Search in Google Scholar

Duvezin-Caubet, S., Jagasia, R., Wagener, J., Hofmann, S., Trifunovic, A., Hansson, A., Chomyn, A., Bauer, M.F., Attardi, G., Larsson, N.G., et al. (2006). Proteolytic Processing of OPA1 Links Mitochondrial Dysfunction to Alterations in Mitochondrial Morphology. J. Biol. Chem. 281, 37972–37979.10.1074/jbc.M606059200Search in Google Scholar

Flis, V.V. and Daum, G. (2013). Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb. Perspect Biol. 5, pii: a013235.Search in Google Scholar

Frey, T.G. and Mannella, C.A. (2000). The internal structure of mitochondria. Trends Biochem. Sci. 25, 319–324.10.1016/S0968-0004(00)01609-1Search in Google Scholar

Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G.V., Rudka, T., Bartoli, D., Polishuck, R.S., Danial, N.N., De Strooper, B., et al. (2006). OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189.10.1016/j.cell.2006.06.025Search in Google Scholar

Galloway, C.A., Lee, H., and Yoon, Y. (2012). Mitochondrial morphology-emerging role in bioenergetics. Free Radic. Biol. Med. 53, 2218–2228.10.1016/j.freeradbiomed.2012.09.035Search in Google Scholar

Gebert, N., Joshi, A.S., Kutik, S., Becker, T., McKenzie, M., Guan, X.L., Mooga, V.P., Stroud, D.A., Kulkarni, G., Wenk, M.R., et al. (2009). Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr. Biol. 19, 2133–2139.10.1016/j.cub.2009.10.074Search in Google Scholar

Gilkerson, R.W., Selker, J.M., and Capaldi, R.A. (2003). The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett. 546, 355–358.10.1016/S0014-5793(03)00633-1Search in Google Scholar

Gonzalvez, F., D’Aurelio, M., Boutant, M., Moustapha, A., Puech, J.P., Landes, T., Arnaune-Pelloquin, L., Vial, G., Taleux, N., Slomianny, C., et al. (2013). Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochim. Biophys. Acta 1832, 1194–1206.10.1016/j.bbadis.2013.03.005Search in Google Scholar PubMed

Haines, T.H. and Dencher, N.A. (2002). Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett. 528, 35–39.10.1016/S0014-5793(02)03292-1Search in Google Scholar

Han, S.M., Lee, T.H., Mun, J.Y., Kim, M.J., Kritikou, E.A., Lee, S.J., Han, S.S., Hengartner, M.O., and Koo, H.S. (2006). Deleted in cancer 1 (DICE1) is an essential protein controlling the topology of the inner mitochondrial membrane in C. elegans. Development 133, 3597–3606.10.1242/dev.02534Search in Google Scholar

Harner, M., Korner, C., Walther, D., Mokranjac, D., Kaesmacher, J., Welsch, U., Griffith, J., Mann, M., Reggiori, F., and Neupert, W. (2011). The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J. 30, 4356–4370.10.1038/emboj.2011.379Search in Google Scholar

Hartl, F.U. and Neupert, W. (1989). Import of proteins into the various submitochondrial compartments. J. Cell Sci. Suppl. 11, 187–198.10.1242/jcs.1989.Supplement_11.15Search in Google Scholar

Hartl, F.U., Pfanner, N., Nicholson, D.W., and Neupert, W. (1989). Mitochondrial protein import. Biochim. Biophys. Acta 988, 1–45.10.1016/0304-4157(89)90002-6Search in Google Scholar

Hatch, G.M. (1998). Cardiolipin: biosynthesis, remodeling and trafficking in the heart and mammalian cells (Review). Int. J. Mol. Med. 1, 33–41.10.3892/ijmm.1.1.33Search in Google Scholar PubMed

Head, B.P., Zulaika, M., Ryazantsev, S., and van der Bliek, A.M. (2011). A novel mitochondrial outer membrane protein, MOMA-1, that affects cristae morphology in Caenorhabditis elegans. Mol. Biol. Cell 22, 831–841.10.1091/mbc.e10-07-0600Search in Google Scholar

Heide, H., Bleier, L., Steger, M., Ackermann, J., Drose, S., Schwamb, B., Zornig, M., Reichert, A.S., Koch, I., Wittig, I., et al. (2012). Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab. 16, 538–549.10.1016/j.cmet.2012.08.009Search in Google Scholar PubMed

Herlan, M., Bornhövd, C., Hell, K., Neupert, W., and Reichert, A.S. (2004). Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J. Cell Biol. 165, 167–173.10.1083/jcb.200403022Search in Google Scholar PubMed PubMed Central

Hess, D.C., Myers, C.L., Huttenhower, C., Hibbs, M.A., Hayes, A.P., Paw, J., Clore, J.J., Mendoza, R.M., Luis, B.S., Nislow, C., et al. (2009). Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis. PLoS Genet. 5, e1000407.10.1371/journal.pgen.1000407Search in Google Scholar PubMed PubMed Central

Hoppins, S., Collins, S.R., Cassidy-Stone, A., Hummel, E., Devay, R.M., Lackner, L.L., Westermann, B., Schuldiner, M., Weissman, J.S., and Nunnari, J. (2011). A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195, 323–40.10.1083/jcb.201107053Search in Google Scholar

Horvath, S.E. and Daum, G. (2013). Lipids of mitochondria. Prog. Lipid Res. 52, 590–614.10.1016/j.plipres.2013.07.002Search in Google Scholar

Hostetler, K.Y. (1991). Effect of thyroxine on the activity of mitochondrial cardiolipin synthase in rat liver. Biochim. Biophys. Acta 1086, 139–140.10.1016/0005-2760(91)90165-ESearch in Google Scholar

Ishihara, N., Fujita, Y., Oka, T., and Mihara, K. (2006). Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966–2977.10.1038/sj.emboj.7601184Search in Google Scholar PubMed PubMed Central

John, G.B., Shang, Y., Li, L., Renken, C., Mannella, C.A., Selker, J.M., Rangell, L., Bennett, M.J., and Zha, J. (2005). The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol. Biol. Cell 16, 1543–1554.10.1091/mbc.e04-08-0697Search in Google Scholar PubMed PubMed Central

Kates, M., Syz, J.Y., Gosser, D., and Haines, T.H. (1993). pH-dissociation characteristics of cardiolipin and its 2′-deoxy analogue. Lipids 28, 877–882.10.1007/BF02537494Search in Google Scholar PubMed

Kent, C. (1995). Eukaryotic phospholipid biosynthesis. Annu. Rev. Biochem. 64, 315–43.10.1146/annurev.bi.64.070195.001531Search in Google Scholar PubMed

Kim, T.H., Zhao, Y., Ding, W.X., Shin, J.N., He, X., Seo, Y.W., Chen, J., Rabinowich, H., Amoscato, A.A., and Yin, X.M. (2004). Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol. Biol. Cell 15, 3061–3072.10.1091/mbc.e03-12-0864Search in Google Scholar PubMed PubMed Central

Körner, C., Barrera, M., Dukanovic, J., Eydt, K., Harner, M., Rabl, R., Vogel, F., Rapaport, D., Neupert, W., and Reichert, A.S. (2012). The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Mol. Biol. Cell 23, 2143–2155.10.1091/mbc.e11-10-0831Search in Google Scholar PubMed PubMed Central

Kornmann, B. (2013). The molecular hug between the ER and the mitochondria. Curr. Opin. Cell Biol. 25, 443–448.10.1016/j.ceb.2013.02.010Search in Google Scholar PubMed

Kulawiak, B., Hopker, J., Gebert, M., Guiard, B., Wiedemann, N., and Gebert, N. (2013). The mitochondrial protein import machinery has multiple connections to the respiratory chain. Biochim. Biophys. Acta 1827, 612–626.10.1016/j.bbabio.2012.12.004Search in Google Scholar

Lamant, M., Smih, F., Harmancey, R., Philip-Couderc, P., Pathak, A., Roncalli, J., Galinier, M., Collet, X., Massabuau, P., Senard, J.M., et al. (2006). ApoO, a novel apolipoprotein, is an original glycoprotein up-regulated by diabetes in human heart. J. Biol. Chem. 281, 36289–36302.10.1074/jbc.M510861200Search in Google Scholar

Liu, J., Chen, J., Dai, Q., and Lee, R.M. (2003a). Phospholipid scramblase 3 is the mitochondrial target of protein kinase C delta-induced apoptosis. Cancer Res. 63, 1153–1156.Search in Google Scholar

Liu, J., Dai, Q., Chen, J., Durrant, D., Freeman, A., Liu, T., Grossman, D., and Lee, R.M. (2003b). Phospholipid scramblase 3 controls mitochondrial structure, function, and apoptotic response. Mol. Cancer Res. 1, 892–902.Search in Google Scholar

Mannella, C.A., Marko, M., and Buttle, K. (1997). Reconsidering mitochondrial structure: new views of an old organelle. Trends Biochem. Sci. 22, 37–38.10.1016/S0968-0004(96)30050-9Search in Google Scholar

Merkwirth, C., Dargazanli, S., Tatsuta, T., Geimer, S., Lower, B., Wunderlich, F.T., von Kleist-Retzow, J.C., Waisman, A., Westermann, B., and Langer, T. (2008). Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 22, 476–488.10.1101/gad.460708Search in Google Scholar PubMed PubMed Central

Merkwirth, C., Martinelli, P., Korwitz, A., Morbin, M., Bronneke, H.S., Jordan, S.D., Rugarli, E.I., and Langer, T. (2012). Loss of prohibitin membrane scaffolds impairs mitochondrial architecture and leads to tau hyperphosphorylation and neurodegeneration. PLoS Genet. 8, e1003021.10.1371/journal.pgen.1003021Search in Google Scholar PubMed PubMed Central

Michel, A.H. and Kornmann, B. (2012). The ERMES complex and ER-mitochondria connections. Biochem Soc Trans. 40, 445–450.10.1042/BST20110758Search in Google Scholar PubMed

Mitra, K., Wunder, C., Roysam, B., Lin, G., and Lippincott-Schwartz, J. (2009). A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 106, 11960–11965.10.1073/pnas.0904875106Search in Google Scholar PubMed PubMed Central

Mun, J.Y., Lee, T.H., Kim, J.H., Yoo, B.H., Bahk, Y.Y., Koo, H.S., and Han, S.S. (2010). Caenorhabditis elegans mitofilin homologs control the morphology of mitochondrial cristae and influence reproduction and physiology. J. Cell Physiol. 224, 748–756.10.1002/jcp.22177Search in Google Scholar PubMed

Neupert, W. and Herrmann, J.M. (2007). Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76, 723–749.10.1146/annurev.biochem.76.052705.163409Search in Google Scholar PubMed

Nijstad, N., de Boer, J.F., Lagor, W.R., Toelle, M., Usher, D., Annema, W., der Giet, M., Rader, D.J., and Tietge, U.J. (2011). Overexpression of apolipoprotein O does not impact on plasma HDL levels or functionality in human apolipoprotein A-I transgenic mice. Biochim. Biophys. Acta 1811, 294–299.10.1016/j.bbalip.2011.01.008Search in Google Scholar PubMed

Odgren, P.R., Toukatly, G., Bangs, P.L., Gilmore, R., and Fey, E.G. (1996). Molecular characterization of mitofilin (HMP), a mitochondria-associated protein with predicted coiled coil and intermembrane space targeting domains. J. Cell Sci. 109, 2253–2264.10.1242/jcs.109.9.2253Search in Google Scholar

Olichon, A., Baricault, L., Gas, N., Guillou, E., Valette, A., Belenguer, P., and Lenaers, G. (2003). Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743–7746.10.1074/jbc.C200677200Search in Google Scholar

Ortiz, A., Killian, J.A., Verkleij, A.J., and Wilschut, J. (1999). Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Biophys. J. 77, 2003–2014.10.1016/S0006-3495(99)77041-4Search in Google Scholar

Osman, C., Haag, M., Potting, C., Rodenfels, J., Dip, P.V., Wieland, F.T., Brugger, B., Westermann, B., and Langer, T. (2009a). The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J. Cell Biol. 184, 583–596.10.1083/jcb.200810189Search in Google Scholar PubMed PubMed Central

Osman, C., Merkwirth, C., and Langer, T. (2009b). Prohibitins and the functional compartmentalization of mitochondrial membranes. J. Cell Sci. 122, 3823–2830.10.1242/jcs.037655Search in Google Scholar PubMed

Osman, C., Voelker, D.R., and Langer, T. (2011). Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 192, 7–16.10.1083/jcb.201006159Search in Google Scholar PubMed PubMed Central

Ott, C., Ross, K., Straub, S., Thiede, B., Gotz, M., Goosmann, C., Krischke, M., Mueller, M.J., Krohne, G., Rudel, T., et al. (2012). Sam50 functions in mitochondrial intermembrane space bridging and biogenesis of respiratory complexes. Mol. Cell. Biol. 32, 1173–1188.10.1128/MCB.06388-11Search in Google Scholar PubMed PubMed Central

Pagano, G. and Castello, G. (2012). Oxidative stress and mitochondrial dysfunction in Down syndrome. Adv. Exp. Med. Biol. 724, 291–299.10.1007/978-1-4614-0653-2_22Search in Google Scholar PubMed

Papanicolaou, K.N., Khairallah, R.J., Ngoh, G.A., Chikando, A., Luptak, I., O’Shea, K.M., Riley, D.D., Lugus, J.J., Colucci, W.S., Lederer, W.J., et al. (2011). Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol. Cell Biol. 31, 1309–1328.10.1128/MCB.00911-10Search in Google Scholar PubMed PubMed Central

Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D.M., Brethes, D., di Rago, J.P., and Velours, J. (2002). The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21, 221–230.10.1093/emboj/21.3.221Search in Google Scholar PubMed PubMed Central

Pfaller, R., Pfanner, N., and Neupert, W. (1989). Mitochondrial protein import. Bypass of proteinaceous surface receptors can occur with low specificity and efficiency. J. Biol. Chem. 264, 34–39.10.1016/S0021-9258(17)31220-6Search in Google Scholar

Pfeiffer, K., Gohil, V., Stuart, R.A., Hunte, C., Brandt, U., Greenberg, M.L., and Schagger, H. (2003). Cardiolipin stabilizes respiratory chain supercomplexes. J. Biol. Chem. 278, 52873–52880.10.1074/jbc.M308366200Search in Google Scholar

Potting, C., Tatsuta, T., Konig, T., Haag, M., Wai, T., Aaltonen, M.J., and Langer, T. (2013). TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. Cell Metab. 18, 287–295.10.1016/j.cmet.2013.07.008Search in Google Scholar

Rabl, R., Soubannier, V., Scholz, R., Vogel, F., Mendl, N., Vasiljev-Neumeyer, A., Körner, C., Jagasia, R., Keil, T., Baumeister, W., et al. (2009). Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J. Cell Biol. 185, 1047–1063.10.1083/jcb.200811099Search in Google Scholar

Reed, J.C. and Green, D.R. (2002). Remodeling for demolition: changes in mitochondrial ultrastructure during apoptosis. Mol. Cell. 9, 1–3.10.1016/S1097-2765(02)00437-9Search in Google Scholar

Reichert, A.S. and Neupert, W. (2004). Mitochondriomics or what makes us breathe. Trends Genet. 20, 555–562.10.1016/j.tig.2004.08.012Search in Google Scholar

Schägger, H. (2002). Respiratory chain supercomplexes of mitochondria and bacteria. Biochim. Biophys. Acta 1555, 154–159.10.1016/S0005-2728(02)00271-2Search in Google Scholar

Schägger, H., de Coo, R., Bauer, M.F., Hofmann, S., Godinot, C., and Brandt, U. (2004). Significance of respirasomes for the assembly/stability of human respiratory chain complex J. Biol. Chem. 279, 36349–36353.10.1074/jbc.M404033200Search in Google Scholar

Schlame, M. (2012). Cardiolipin remodeling and the function of tafazzin. Biochim. Biophys. Acta 1831, 582–588.10.1016/j.bbalip.2012.11.007Search in Google Scholar

Schlame, M. and Hostetler, K.Y. (1991). Solubilization, purification, and characterization of cardiolipin synthase from rat liver mitochondria. Demonstration of its phospholipid requirement. J. Biol. Chem. 266, 22398–22403.10.1016/S0021-9258(18)54586-5Search in Google Scholar

Schlame, M. and Hostetler, K.Y. (1997). Cardiolipin synthase from mammalian mitochondria. Biochim. Biophys. Acta 1348, 207–213.10.1016/S0005-2760(97)00119-7Search in Google Scholar

Schwall, C.T., Greenwood, V.L., and Alder, N.N. (2012). The stability and activity of respiratory Complex II is cardiolipin-dependent. Biochim. Biophys. Acta 1817, 1588–1596.10.1016/j.bbabio.2012.04.015Search in Google Scholar

Scorrano, L., Ashiya, M., Buttle, K., Weiler, S., Oakes, S.A., Mannella, C.A., and Korsmeyer, S.J. (2002). A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell. 2, 55–67.10.1016/S1534-5807(01)00116-2Search in Google Scholar

Strauss, M., Hofhaus, G., Schroder, R.R., and Kuhlbrandt, W. (2008). Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 27, 1154–1160.10.1038/emboj.2008.35Search in Google Scholar PubMed PubMed Central

Strecker, V., Wumaier, Z., Wittig, I., and Schägger, H. (2010). Large pore gels to separate mega protein complexes larger than 10 MDa by blue native electrophoresis: isolation of putative respiratory strings or patches. Proteomics 10, 3379–3387.10.1002/pmic.201000343Search in Google Scholar PubMed

Sukhorukov, V.M. and Bereiter-Hahn, J. (2009). Anomalous diffusion induced by cristae geometry in the inner mitochondrial membrane. PLoS One 4, e4604.10.1371/journal.pone.0004604Search in Google Scholar PubMed PubMed Central

Tan, T., Ozbalci, C., Brugger, B., Rapaport, D., and Dimmer, K.S. (2013). Mcp1 and Mcp2, two novel proteins involved in mitochondrial lipid homeostasis. J. Cell Sci. 126, 3563–3574.10.1242/jcs.121244Search in Google Scholar PubMed

Tatsuta, T., Model, K., and Langer, T. (2005). Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol. Biol. Cell 16, 248–259.10.1091/mbc.e04-09-0807Search in Google Scholar PubMed PubMed Central

Tondera, D., Grandemange, S., Jourdain, A., Karbowski, M., Mattenberger, Y., Herzig, S., Da Cruz, S., Clerc, P., Raschke, I., Merkwirth, C., et al. (2009). SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589–1600.10.1038/emboj.2009.89Search in Google Scholar PubMed PubMed Central

van Gestel, R.A., Rijken, P.J., Surinova, S., O’Flaherty, M., Heck, A.J., Killian, J.A., de Kroon, A.I., and Slijper, M. (2010). The influence of the acyl chain composition of cardiolipin on the stability of mitochondrial complexes; an unexpected effect of cardiolipin in alpha-ketoglutarate dehydrogenase and prohibitin complexes. J. Proteomics 73, 806–814.10.1016/j.jprot.2009.11.009Search in Google Scholar PubMed

Veresov, V. and Davidovskii, A.I. (2014). Structural insights into proapoptotic signaling mediated by MTCH2, VDAC2, TOM40 and TOM22. Cell Signal. 26, 370–382.10.1016/j.cellsig.2013.11.016Search in Google Scholar PubMed

Vogel, F., Bornhövd, C., Neupert, W., and Reichert, A.S. (2006). Dynamic subcompartmentalization of the mitochondrial inner membrane. J. Cell Biol. 175, 237–247.10.1083/jcb.200605138Search in Google Scholar PubMed PubMed Central

von der Malsburg, K., Muller, J.M., Bohnert, M., Oeljeklaus, S., Kwiatkowska, P., Becker, T., Loniewska-Lwowska, A., Wiese, S., Rao, S., Milenkovic, D., et al. (2011). Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell. 21, 694–707.10.1016/j.devcel.2011.08.026Search in Google Scholar PubMed

Weber, T.A., Koob, S., Heide, H., Wittig, I., Head, B., van der Bliek, A.M., Brandt, U., Mittelbronn, M., and Reichert, A.S. (2013). APOOL is a cardiolipin-binding constituent of the Mitofilin/MINOS protein complex determining cristae morphology in mammalian mitochondria. PLoS One 8, e63683.10.1371/journal.pone.0063683Search in Google Scholar PubMed PubMed Central

Weeber, E.J., Levy, M., Sampson, M.J., Anflous, K., Armstrong, D.L., Brown, S.E., Sweatt, J.D., and Craigen, W.J. (2002). The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J. Biol. Chem. 277, 18891–18897.10.1074/jbc.M201649200Search in Google Scholar PubMed

Wideman, J.G., Lackey, S.W., Srayko, M.A., Norton, K.A., and Nargang, F.E. (2013). Analysis of mutations in Neurospora crassa ERMES components reveals specific functions related to beta-barrel protein assembly and maintenance of mitochondrial morphology. PLoS One 8, e71837.10.1371/journal.pone.0071837Search in Google Scholar PubMed PubMed Central

Wurm, C.A. and Jakobs, S. (2006). Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. FEBS Lett. 580, 5628–5634.10.1016/j.febslet.2006.09.012Search in Google Scholar PubMed

Xie, J., Marusich, M.F., Souda, P., Whitelegge, J., and Capaldi, R.A. (2007). The mitochondrial inner membrane protein mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11. FEBS Lett. 581, 3545–3549.10.1016/j.febslet.2007.06.052Search in Google Scholar PubMed

Yang, R.F., Zhao, G.W., Liang, S.T., Zhang, Y., Sun, L.H., Chen, H.Z., and Liu, D.P. (2012). Mitofilin regulates cytochrome c release during apoptosis by controlling mitochondrial cristae remodeling. Biochem. Biophys. Res. Commun. 428, 93–98.10.1016/j.bbrc.2012.10.012Search in Google Scholar PubMed

Yerabham, A.S., Weiergraber, O.H., Bradshaw, N.J., and Korth, C. (2013). Revisiting Disrupted-in-Schizophrenia 1 as a scaffold protein. J. Biol. Chem. 394, 1425–1437.10.1515/hsz-2013-0178Search in Google Scholar PubMed

Yu, B.L., Wu, C.L., and Zhao, S.P. (2012). Plasma apolipoprotein O level increased in the patients with acute coronary syndrome. J. Lipid Res. 53, 1952–1957.10.1194/jlr.P023028Search in Google Scholar PubMed PubMed Central

Zerbes, R.M., Bohnert, M., Stroud, D.A., von der Malsburg, K., Kram, A., Oeljeklaus, S., Warscheid, B., Becker, T., Wiedemann, N., Veenhuis, M., et al. (2012). Role of MINOS in Mitochondrial Membrane Architecture: Cristae Morphology and Outer Membrane Interactions Differentially Depend on Mitofilin Domains. J. Mol. Biol. 422, 183–191.10.1016/j.jmb.2012.05.004Search in Google Scholar PubMed

Zhang, J., Guan, Z., Murphy, A.N., Wiley, S.E., Perkins, G.A., Worby, C.A., Engel, J.L., Heacock, P., Nguyen, O.K., Wang, J.H., et al. (2011). Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab. 13, 690–700.10.1016/j.cmet.2011.04.007Search in Google Scholar PubMed PubMed Central

Zick, M., Rabl, R., and Reichert, A.S. (2009). Cristae formation-linking ultrastructure and function of mitochondria. Biochim. Biophys. Acta 1793, 5–19.10.1016/j.bbamcr.2008.06.013Search in Google Scholar PubMed

Received: 2013-11-7
Accepted: 2013-12-21
Published Online: 2014-01-03
Published in Print: 2014-03-01

©2014 by Walter de Gruyter Berlin Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2013-0274/html
Scroll to top button