Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 24, 2016

Annexins in plasma membrane repair

  • Theresa Louise Boye and Jesper Nylandsted EMAIL logo
From the journal Biological Chemistry

Abstract

Disruption of the plasma membrane poses deadly threat to eukaryotic cells and survival requires a rapid membrane repair system. Recent evidence reveal various plasma membrane repair mechanisms, which are required for cells to cope with membrane lesions including membrane fusion and replacement strategies, remodeling of cortical actin cytoskeleton and vesicle wound patching. Members of the annexin protein family, which are Ca2+-triggered phospholipid-binding proteins emerge as important components of the plasma membrane repair system. Here, we discuss the mechanisms of plasma membrane repair involving annexins spanning from yeast to human cancer cells.

Acknowledgments

Work in the group of Nylandsted discussed in this review was supported by the Scientific Committee Danish Cancer Society (R90-A5847-14-S2) and Danish Council for Independent Research (DFF), Medical Sciences (DFF – 4183-00067).

References

Alvarez-Martinez, M.T., Mani, J.C., Porte, F., Faivre-Sarrailh, C., Liautard, J.P., and Sri Widada, J. (1996). Characterization of the interaction between annexin I and profilin. Eur. J. Biochem. 238, 777–784.10.1111/j.1432-1033.1996.0777w.xSearch in Google Scholar

Alvarez-Martinez, M.T., Porte, F., Liautard, J.P., and Sri Widada, J. (1997). Effects of profilin-annexin I association on some properties of both profilin and annexin I: modification of the inhibitory activity of profilin on actin polymerization and inhibition of the self-association of annexin I and its interactions with liposomes. Biochim. Biophys. Acta 1339, 331–340.10.1016/S0167-4838(97)00018-6Search in Google Scholar

Andrews, N.W. (2002). Lysosomes and the plasma membrane: trypanosomes reveal a secret relationship. J. Cell Biol. 158, 389–394.10.1083/jcb.200205110Search in Google Scholar

Babiychuk, E.B., Palstra, R.J., Schaller, J., Kampfer, U., and Draeger, A. (1999). Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J. Biol. Chem. 274, 35191–35195.10.1074/jbc.274.49.35191Search in Google Scholar

Babiychuk, E.B., Monastyrskaya, K., Potez, S., and Draeger, A. (2009). Intracellular Ca2+ operates a switch between repair and lysis of streptolysin O-perforated cells. Cell Death Differ. 16, 1126–1134.10.1038/cdd.2009.30Search in Google Scholar

Babiychuk, E.B., Monastyrskaya, K., Potez, S., and Draeger, A. (2011). Blebbing confers resistance against cell lysis. Cell Death Differ. 18, 80–89.10.1038/cdd.2010.81Search in Google Scholar

Bansal, D., Miyake, K., Vogel, S.S., Groh, S., Chen, C.C., Williamson, R., McNeil, P.L., and Campbell, K.P. (2003). Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423, 168–172.10.1038/nature01573Search in Google Scholar

Bement, W.M., Forscher, P., and Mooseker, M.S. (1993). A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J. Cell Biol. 121, 565–578.10.1083/jcb.121.3.565Search in Google Scholar

Bement, W.M., Mandato, C.A., and Kirsch, M.N. (1999). Wound-induced assembly and closure of an actomyosin purse string in Xenopus oocytes. Curr. Biol. 9, 579–587.10.1016/S0960-9822(99)80261-9Search in Google Scholar

Bi, G.Q., Morris, R.L., Liao, G., Alderton, J.M., Scholey, J.M., and Steinhardt, R.A. (1997). Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J. Cell Biol. 138, 999–1008.10.1083/jcb.138.5.999Search in Google Scholar PubMed PubMed Central

Borgonovo, B., Cocucci, E., Racchetti, G., Podini, P., Bachi, A., and Meldolesi, J. (2002). Regulated exocytosis: a novel, widely expressed system. Nat. Cell Biol. 4, 955–962.10.1038/ncb888Search in Google Scholar PubMed

Bouter, A., Gounou, C., Berat, R., Tan, S., Gallois, B., Granier, T., d’Estaintot, B.L., Poschl, E., Brachvogel, B., and Brisson, A.R. (2011). Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat. Commun. 2, 270.10.1038/ncomms1270Search in Google Scholar PubMed PubMed Central

Brownawell, A.M. and Creutz, C.E. (1997). Calcium-dependent binding of sorcin to the N-terminal domain of synexin (annexin VII). J. Biol. Chem. 272, 22182–22190.10.1074/jbc.272.35.22182Search in Google Scholar PubMed

Caohuy, H., Srivastava, M., and Pollard, H.B. (1996). Membrane fusion protein synexin (annexin VII) as a Ca2+/GTP sensor in exocytotic secretion. Proc. Natl. Acad. Sci. USA 93, 10797–10802.10.1073/pnas.93.20.10797Search in Google Scholar PubMed PubMed Central

Cerny, J., Feng, Y., Yu, A., Miyake, K., Borgonovo, B., Klumperman, J., Meldolesi, J., McNeil, P.L., and Kirchhausen, T. (2004). The small chemical vacuolin-1 inhibits Ca2+-dependent lysosomal exocytosis but not cell resealing. EMBO Rep. 5, 883–888.10.1038/sj.embor.7400243Search in Google Scholar PubMed PubMed Central

Chakrabarti, S., Kobayashi, K.S., Flavell, R.A., Marks, C.B., Miyake, K., Liston, D.R., Fowler, K.T., Gorelick, F.S., and Andrews, N.W. (2003). Impaired membrane resealing and autoimmune myositis in synaptotagmin VII-deficient mice. J. Cell Biol. 162, 543–549.10.1083/jcb.200305131Search in Google Scholar PubMed PubMed Central

Corrotte, M., Fernandes, M.C., Tam, C., and Andrews, N.W. (2012). Toxin pores endocytosed during plasma membrane repair traffic into the lumen of MVBs for degradation. Traffic 13, 483–494.10.1111/j.1600-0854.2011.01323.xSearch in Google Scholar PubMed PubMed Central

Corrotte, M., Almeida, P.E., Tam, C., Castro-Gomes, T., Fernandes, M.C., Millis, B.A., Cortez, M., Miller, H., Song, W., Maugel, T.K., et al. (2013). Caveolae internalization repairs wounded cells and muscle fibers. Elife 2, e00926.10.7554/eLife.00926Search in Google Scholar PubMed PubMed Central

de Diego, I., Schwartz, F., Siegfried, H., Dauterstedt, P., Heeren, J., Beisiegel, U., Enrich, C., and Grewal, T. (2002). Cholesterol modulates the membrane binding and intracellular distribution of annexin 6. J. Biol. Chem. 277, 32187–32194.10.1074/jbc.M205499200Search in Google Scholar PubMed

Draeger, A., Monastyrskaya, K., and Babiychuk, E.B. (2011). Plasma membrane repair and cellular damage control: the annexin survival kit. Biochem. Pharmacol. 81, 703–712.10.1016/j.bcp.2010.12.027Search in Google Scholar PubMed

Eddleman, C.S., Ballinger, M.L., Smyers, M.E., Fishman, H.M., and Bittner, G.D. (1998). Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury. J. Neurosci. 18, 4029–4041.10.1523/JNEUROSCI.18-11-04029.1998Search in Google Scholar

Gerelsaikhan, T., Vasa, P.K., and Chander, A. (2012). Annexin A7 and SNAP23 interactions in alveolar type II cells and in vitro: a role for Ca2+ and PKC. Biochim. Biophys. Acta 1823, 1796–1806.10.1016/j.bbamcr.2012.06.010Search in Google Scholar PubMed PubMed Central

Gerke, V. and Moss, S.E. (2002). Annexins: from structure to function. Physiol. Rev. 82, 331–371.10.1152/physrev.00030.2001Search in Google Scholar PubMed

Gerke, V., Creutz, C.E., and Moss, S.E. (2005). Annexins: linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol. 6, 449–461.10.1038/nrm1661Search in Google Scholar PubMed

Godell, C.M., Smyers, M.E., Eddleman, C.S., Ballinger, M.L., Fishman, H.M., and Bittner, G.D. (1997). Calpain activity promotes the sealing of severed giant axons. Proc. Natl. Acad. Sci. USA 94, 4751–4756.10.1073/pnas.94.9.4751Search in Google Scholar PubMed PubMed Central

Godin, L.M., Vergen, J., Prakash, Y.S., Pagano, R.E., and Hubmayr, R.D. (2011). Spatiotemporal dynamics of actin remodeling and endomembrane trafficking in alveolar epithelial type I cell wound healing. Am. J. Physiol. Lung Cell Mol. Physiol. 300, L615–L623.10.1152/ajplung.00265.2010Search in Google Scholar PubMed PubMed Central

Goebeler, V., Poeter, M., Zeuschner, D., Gerke, V., and Rescher, U. (2008). Annexin A8 regulates late endosome organization and function. Mol. Biol. Cell 19, 5267–5278.10.1091/mbc.e08-04-0383Search in Google Scholar PubMed PubMed Central

Grewal, T., Heeren, J., Mewawala, D., Schnitgerhans, T., Wendt, D., Salomon, G., Enrich, C., Beisiegel, U., and Jackle, S. (2000). Annexin VI stimulates endocytosis and is involved in the trafficking of low density lipoprotein to the prelysosomal compartment. J. Biol. Chem. 275, 33806–33813.10.1074/jbc.M002662200Search in Google Scholar PubMed

Grieve, A.G., Moss, S.E., and Hayes, M.J. (2012). Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization. Int. J. Cell Biol. 2012, 852430.10.1155/2012/852430Search in Google Scholar PubMed PubMed Central

Harder, T. and Gerke, V. (1993). The subcellular distribution of early endosomes is affected by the annexin II2p11(2) complex. J. Cell Biol. 123, 1119–1132.10.1083/jcb.123.5.1119Search in Google Scholar PubMed PubMed Central

Hinshaw, J.E. and Schmid, S.L. (1995). Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192.10.1038/374190a0Search in Google Scholar PubMed

Huber, R., Romisch, J., and Paques, E.P. (1990). The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J. 9, 3867–3874.10.1002/j.1460-2075.1990.tb07605.xSearch in Google Scholar PubMed PubMed Central

Idone, V., Tam, C., Goss, J.W., Toomre, D., Pypaert, M., and Andrews, N.W. (2008). Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J. Cell Biol. 180, 905–914.10.1083/jcb.200708010Search in Google Scholar PubMed PubMed Central

Jahn, R. and Scheller, R.H. (2006). SNAREs – engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643.10.1038/nrm2002Search in Google Scholar PubMed

Jaiswal, J.K. and Nylandsted, J. (2015). S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle 14, 502–509.10.1080/15384101.2014.995495Search in Google Scholar PubMed PubMed Central

Jaiswal, J.K., Andrews, N.W., and Simon, S.M. (2002). Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 159, 625–635.10.1083/jcb.200208154Search in Google Scholar PubMed PubMed Central

Jaiswal, J.K., Lauritzen, S.P., Scheffer, L., Sakaguchi, M., Bunkenborg, J., Simon, S.M., Kallunki, T., Jaattela, M., and Nylandsted, J. (2014). S100A11 is required for efficient plasma membrane repair and survival of invasive cancer cells. Nat. Commun. 5, 3795.10.1038/ncomms4795Search in Google Scholar PubMed PubMed Central

Jimenez, A.J., Maiuri, P., Lafaurie-Janvore, J., Divoux, S., Piel, M., and Perez, F. (2014). ESCRT machinery is required for plasma membrane repair. Science 343, 1247136.10.1126/science.1247136Search in Google Scholar PubMed

Jost, M., Zeuschner, D., Seemann, J., Weber, K., and Gerke, V. (1997). Identification and characterization of a novel type of annexin-membrane interaction: Ca2+ is not required for the association of annexin II with early endosomes. J. Cell Sci. 110, 221–228.10.1242/jcs.110.2.221Search in Google Scholar PubMed

Keefe, D., Shi, L., Feske, S., Massol, R., Navarro, F., Kirchhausen, T., and Lieberman, J. (2005). Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 23, 249–262.10.1016/j.immuni.2005.08.001Search in Google Scholar PubMed

Kelly, B.T., Graham, S.C., Liska, N., Dannhauser, P.N., Honing, S., Ungewickell, E.J., and Owen, D.J. (2014). Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch. Science 345, 459–463.10.1126/science.1254836Search in Google Scholar

Keyel, P.A., Loultcheva, L., Roth, R., Salter, R.D., Watkins, S.C., Yokoyama, W.M., and Heuser, J.E. (2011). Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane. J. Cell Sci. 124, 2414–2423.10.1242/jcs.076182Search in Google Scholar

Konig, J. and Gerke, V. (2000). Modes of annexin-membrane interactions analyzed by employing chimeric annexin proteins. Biochim. Biophys. Acta 1498, 174–180.10.1016/S0167-4889(00)00094-XSearch in Google Scholar

Lauritzen, S.P., Boye, T.L., and Nylandsted, J. (2015). Annexins are instrumental for efficient plasma membrane repair in cancer cells. Semin. Cell Dev. Biol. 45, 32–38.10.1016/j.semcdb.2015.10.028Search in Google Scholar PubMed

Lennon, N.J., Kho, A., Bacskai, B.J., Perlmutter, S.L., Hyman, B.T., and Brown, R.H., Jr. (2003). Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J. Biol. Chem. 278, 50466–50473.10.1074/jbc.M307247200Search in Google Scholar PubMed

Lorusso, A., Covino, C., Priori, G., Bachi, A., Meldolesi, J., and Chieregatti, E. (2006). Annexin2 coating the surface of enlargeosomes is needed for their regulated exocytosis. EMBO J. 25, 5443–5456.10.1038/sj.emboj.7601419Search in Google Scholar PubMed PubMed Central

Mandato, C.A. and Bement, W.M. (2001). Contraction and polymerization cooperate to assemble and close actomyosin rings around Xenopus oocyte wounds. J. Cell Biol. 154, 785–797.10.1083/jcb.200103105Search in Google Scholar PubMed PubMed Central

Marg, A., Schoewel, V., Timmel, T., Schulze, A., Shah, C., Daumke, O., and Spuler, S. (2012). Sarcolemmal repair is a slow process and includes EHD2. Traffic 13, 1286–1294.10.1111/j.1600-0854.2012.01386.xSearch in Google Scholar PubMed

Martinez, I., Chakrabarti, S., Hellevik, T., Morehead, J., Fowler, K., and Andrews, N.W. (2000). Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in fibroblasts. J. Cell Biol. 148, 1141–1149.10.1083/jcb.148.6.1141Search in Google Scholar PubMed PubMed Central

Mayran, N., Parton, R.G., and Gruenberg, J. (2003). Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J. 22, 3242–3253.10.1093/emboj/cdg321Search in Google Scholar PubMed PubMed Central

McNeil, P.L. (2002). Repairing a torn cell surface: make way, lysosomes to the rescue. J. Cell Sci. 115, 873–879.10.1242/jcs.115.5.873Search in Google Scholar

McNeil, P.L. and Ito, S. (1989). Gastrointestinal cell plasma membrane wounding and resealing in vivo. Gastroenterology 96, 1238–1248.10.1016/S0016-5085(89)80010-1Search in Google Scholar

McNeil, P.L. and Ito, S. (1990). Molecular traffic through plasma membrane disruptions of cells in vivo. J. Cell Sci. 96, 549–556.10.1242/jcs.96.3.549Search in Google Scholar

McNeil, P.L. and Khakee, R. (1992). Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am. J. Pathol. 140, 1097–1109.Search in Google Scholar

McNeil, P.L. and Kirchhausen, T. (2005). An emergency response team for membrane repair. Nat. Rev. Mol. Cell Biol. 6, 499–505.10.1038/nrm1665Search in Google Scholar

McNeil, P.L. and Steinhardt, R.A. (2003). Plasma membrane disruption: repair, prevention, adaptation. Annu. Rev. Cell Dev. Biol. 19, 697–731.10.1146/annurev.cellbio.19.111301.140101Search in Google Scholar

McNeil, P.L., Vogel, S.S., Miyake, K., and Terasaki, M. (2000). Patching plasma membrane disruptions with cytoplasmic membrane. J. Cell Sci. 113, 1891–1902.10.1242/jcs.113.11.1891Search in Google Scholar

McNeil, A.K., Rescher, U., Gerke, V., and McNeil, P.L. (2006). Requirement for annexin A1 in plasma membrane repair. J. Biol. Chem. 281, 35202–35207.10.1074/jbc.M606406200Search in Google Scholar

Mellgren, R.L., Zhang, W., Miyake, K., and McNeil, P.L. (2007). Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane. J. Biol. Chem. 282, 2567–2575.10.1074/jbc.M604560200Search in Google Scholar

Miyake, K., McNeil, P.L., Suzuki, K., Tsunoda, R., and Sugai, N. (2001). An actin barrier to resealing. J. Cell Sci. 114, 3487–3494.10.1242/jcs.114.19.3487Search in Google Scholar

Moss, S.E. and Morgan, R.O. (2004). The annexins. Genome Biol. 5, 219.10.1016/S0962-8924(96)10049-0Search in Google Scholar

Newman, R.H., Leonard, K., and Crumpton, M.J. (1991). 2D crystal forms of annexin IV on lipid monolayers. FEBS Lett. 279, 21–24.10.1016/0014-5793(91)80240-4Search in Google Scholar

Pang, Z.P. and Sudhof, T.C. (2010). Cell biology of Ca2+-triggered exocytosis. Curr. Opin. Cell Biol. 22, 496–505.10.1016/j.ceb.2010.05.001Search in Google Scholar

Potez, S., Luginbuhl, M., Monastyrskaya, K., Hostettler, A., Draeger, A., and Babiychuk, E.B. (2011). Tailored protection against plasmalemmal injury by annexins with different Ca2+ sensitivities. J. Biol. Chem. 286, 17982–17991.10.1074/jbc.M110.187625Search in Google Scholar

Rao, S.K., Huynh, C., Proux-Gillardeaux, V., Galli, T., and Andrews, N.W. (2004). Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J. Biol. Chem. 279, 20471–20479.10.1074/jbc.M400798200Search in Google Scholar

Reddy, A., Caler, E.V., and Andrews, N.W. (2001). Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157–169.10.1016/S0092-8674(01)00421-4Search in Google Scholar

Rescher, U., Zobiack, N., and Gerke, V. (2000). Intact Ca2+-binding sites are required for targeting of annexin 1 to endosomal membranes in living HeLa cells. J. Cell Sci. 113, 3931–3938.10.1242/jcs.113.22.3931Search in Google Scholar PubMed

Rodriguez, A., Webster, P., Ortego, J., and Andrews, N.W. (1997). Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J. Cell Biol. 137, 93–104.10.1083/jcb.137.1.93Search in Google Scholar PubMed PubMed Central

Salzer, U., Hinterdorfer, P., Hunger, U., Borken, C., and Prohaska, R. (2002). Ca++-dependent vesicle release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin. Blood 99, 2569–2577.10.1182/blood.V99.7.2569Search in Google Scholar PubMed

Scheffer, L.L., Sreetama, S.C., Sharma, N., Medikayala, S., Brown, K.J., Defour, A., and Jaiswal, J.K. (2014). Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat. Commun. 5, 5646.10.1038/ncomms6646Search in Google Scholar PubMed PubMed Central

Seemann, J., Weber, K., Osborn, M., Parton, R.G., and Gerke, V. (1996). The association of annexin I with early endosomes is regulated by Ca2+ and requires an intact N-terminal domain. Mol. Biol. Cell 7, 1359–1374.10.1091/mbc.7.9.1359Search in Google Scholar PubMed PubMed Central

Skrahina, T., Piljic, A., and Schultz, C. (2008). Heterogeneity and timing of translocation and membrane-mediated assembly of different annexins. Exp. Cell Res. 314, 1039–1047.10.1016/j.yexcr.2007.11.015Search in Google Scholar

Steinhardt, R.A., Bi, G., and Alderton, J.M. (1994). Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263, 390–393.10.1126/science.7904084Search in Google Scholar

Swaggart, K.A., Demonbreun, A.R., Vo, A.H., Swanson, K.E., Kim, E.Y., Fahrenbach, J.P., Holley-Cuthrell, J., Eskin, A., Chen, Z., Squire, K., et al. (2014). Annexin A6 modifies muscular dystrophy by mediating sarcolemmal repair. Proc. Natl. Acad. Sci. USA 111, 6004–6009.10.1073/pnas.1324242111Search in Google Scholar

Swairjo, M.A. and Seaton, B.A. (1994). Annexin structure and membrane interactions: a molecular perspective. Annu. Rev. Biophys. Biomol. Struct. 23, 193–213.10.1146/annurev.bb.23.060194.001205Search in Google Scholar

Swairjo, M.A., Concha, N.O., Kaetzel, M.A., Dedman, J.R., and Seaton, B.A. (1995). Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nat. Struct. Biol. 2, 968–974.10.1038/nsb1195-968Search in Google Scholar

Sweitzer, S.M. and Hinshaw, J.E. (1998). Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029.10.1016/S0092-8674(00)81207-6Search in Google Scholar

Taylor, M.J., Lampe, M., and Merrifield, C.J. (2012). A feedback loop between dynamin and actin recruitment during clathrin-mediated endocytosis. PLoS Biol. 10, e1001302.10.1371/journal.pbio.1001302Search in Google Scholar PubMed PubMed Central

Terasaki, M., Miyake, K., and McNeil, P.L. (1997). Large plasma membrane disruptions are rapidly resealed by Ca2+-dependent vesicle-vesicle fusion events. J. Cell Biol. 139, 63–74.10.1083/jcb.139.1.63Search in Google Scholar PubMed PubMed Central

Thiery, J., Keefe, D., Saffarian, S., Martinvalet, D., Walch, M., Boucrot, E., Kirchhausen, T., and Lieberman, J. (2010). Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood 115, 1582–1593.10.1182/blood-2009-10-246116Search in Google Scholar PubMed PubMed Central

Togo, T., Alderton, J.M., Bi, G.Q., and Steinhardt, R.A. (1999). The mechanism of facilitated cell membrane resealing. J. Cell Sci. 112, 719–731.10.1242/jcs.112.5.719Search in Google Scholar PubMed

Togo, T., Krasieva, T.B., and Steinhardt, R.A. (2000). A decrease in membrane tension precedes successful cell-membrane repair. Mol. Biol. Cell 11, 4339–4346.10.1091/mbc.11.12.4339Search in Google Scholar

Traub, L.M., Downs, M.A., Westrich, J.L., and Fremont, D.H. (1999). Crystal structure of the alpha appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc. Natl. Acad. Sci. USA 96, 8907–8912.10.1073/pnas.96.16.8907Search in Google Scholar

Wang, L., Seeley, E.S., Wickner, W., and Merz, A.J. (2002). Vacuole fusion at a ring of vertex docking sites leaves membrane fragments within the organelle. Cell 108, 357–369.10.1016/S0092-8674(02)00632-3Search in Google Scholar

Wang, L., Merz, A.J., Collins, K.M., and Wickner, W. (2003). Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J. Cell Biol. 160, 365–374.10.1083/jcb.200209095Search in Google Scholar PubMed PubMed Central

Wang, P., Chintagari, N.R., Gou, D., Su, L., and Liu, L. (2007). Physical and functional interactions of SNAP-23 with annexin A2. Am. J. Respir. Cell Mol. Biol. 37, 467–476.10.1165/rcmb.2006-0447OCSearch in Google Scholar PubMed PubMed Central

Zobiack, N., Rescher, U., Ludwig, C., Zeuschner, D., and Gerke, V. (2003). The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol. Biol. Cell 14, 4896–4908.10.1091/mbc.e03-06-0387Search in Google Scholar PubMed PubMed Central

Received: 2016-4-13
Accepted: 2016-6-14
Published Online: 2016-6-24
Published in Print: 2016-10-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2016-0171/html
Scroll to top button