Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 23, 2016

Annexins A2 and A8 in endothelial cell exocytosis and the control of vascular homeostasis

  • Volker Gerke EMAIL logo
From the journal Biological Chemistry

Abstract

Blood vessel homeostasis is controlled by a variety of regulatory circuits that involve both the vessel-lining endothelial cells as well as the circulating blood cells and products thereof. One important feature is the control exerted by endothelial cells through regulated exocytosis of factors affecting blood coagulation and local inflammatory processes. These factors include two important adhesion proteins: the leukocyte receptor P-selectin and the pro-coagulant von Willebrand factor (VWF) that binds platelets and is involved in the formation of a platelet plug at sites of blood vessel injury. Failure to correctly produce and secrete P-selectin and VWF leads to pathologies such as von Willebrand disease, the most common inherited bleeding disorder. P-selectin and VWF are stored in unique secretory granules, the Weibel-Palade bodies (WPB), that undergo a complex maturation process and are acutely secreted following endothelial stimulation, e.g. in the course of inflammation or following blood vessel injury. Two annexins have been shown to be involved in different aspects of WPB biology: annexin A8 is required for proper WPB maturation and annexin A2 participates in late steps of WPB exocytosis. Thus, by affecting the stimulated release of P-selectin and VWF from endothelial cells, annexins fulfil important functions in the control of vascular homeostasis and could be considered as targets for influencing P-selectin- and VWF-dependent processes/pathologies.

Acknowledgments

Work in the author’s laboraty was supported by the Deutsche Forschungsgemeinschaft (DFG) (EXC 1003; GE 514/6-2 and 9-1) and the Interdisciplinary Centre for Clinical Research of the Münster Medical School.

References

Arribas, M. and Cutler, D.F. (2000). Weibel-Palade body membrane proteins exhibit differential trafficking after exocytosis in endothelial cells. Traffic 1, 783–793.10.1034/j.1600-0854.2000.011005.xSearch in Google Scholar

Bierings, R., Hellen, N., Kiskin, N., Knipe, L., Fonseca, A.V., Patel, B., Meli, A., Rose, M., Hannah, M.J., and Carter, T. (2012). The interplay between the Rab27A effectors Slp4-a and MyRIP controls hormone-evoked Weibel-Palade body exocytosis. Blood 120, 2757–2767.10.1182/blood-2012-05-429936Search in Google Scholar

Borthwick, L.A., McGaw, J., Conner, G., Taylor, C.J., Gerke, V., Mehta, A., Robson, L., and Muimo, R. (2007). The formation of the cAMP/protein kinase A-dependent annexin 2-S100A10 complex with cystic fibrosis conductance regulator protein (CFTR) regulates CFTR channel function. Mol. Biol. Cell 18, 3388–3397.10.1091/mbc.e07-02-0126Search in Google Scholar

Brandherm, I., Disse, J., Zeuschner, D., and Gerke, V. (2013). cAMP-induced secretion of endothelial von Willebrand factor is regulated by a phosphorylation/dephosphorylation switch in annexin A2. Blood 122, 1042–1051.10.1182/blood-2012-12-475251Search in Google Scholar

Chang, K.S., Wang, G., Freireich, E.J., Daly, M., Naylor, S.L., Trujillo, J.M., and Stass, S.A. (1992). Specific expression of the annexin VIII gene in acute promyelocytic leukemia. Blood 79, 1802–1810.10.1182/blood.V79.7.1802.1802Search in Google Scholar

Chasserot-Golaz, S., Vitale, N., Sagot, I., Delouche, B., Dirrig, S., Pradel, L.A., Henry, J.P., Aunis, D., and Bader, M.-F. (1996). Annexin II in exocytosis: catecholamin secretion requires the transolcation of p36 to the subplasmalemmal region in chromaffin cells. J. Cell Biol. 133, 1217–1236.10.1083/jcb.133.6.1217Search in Google Scholar

Chasserot-Golaz, S., Vitale, N., Umbrecht-Jenck, E., Knight, D., Gerke, V., and Bader, M.F. (2005). Annexin 2 promotes the formation of lipid microdomains required for calcium-regulated exocytosis of dense-core vesicles. Mol. Biol. Cell 16, 1108–1119.10.1091/mbc.e04-07-0627Search in Google Scholar

Cines, D.B., Pollak, E.S., Buck, C.A., Loscalzo, J., Zimmermann, G.A., McEver, R.P., Pober, J.S., Konkle, B.A., Schwartz, B.S., Barnathan, E.S., et al. (1998). Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527–3561.Search in Google Scholar

Conte, I.L., Hellen, N., Bierings, R., Mashanov, G.I., Manneville, J.B., Kiskin, N.I., Hannah, M.J., Molloy, J.E., and Carter, T. (2016). Interaction between MyRIP and the actin cytoskeleton regulates Weibel-Palade body trafficking and exocytosis. J. Cell Sci. 129, 592–603.10.1242/jcs.178285Search in Google Scholar

Creutz, C.E. (1992). The annexins and exocytosis. Science 258, 924–931.10.1126/science.1439804Search in Google Scholar

Creutz, C.E., Pazoles, C.J., and Pollard, H.B. (1978). Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of chromaffin granules. J. Biol. Chem. 253, 2858–2866.10.1016/S0021-9258(17)40901-XSearch in Google Scholar

Creutz, C.E., Zaks, W.J., Hamman, H.C., Crane, S., Martin, W.H., Gould, K.L., Oddie, K.M., and Parsons, S.J. (1987). Identification of chromaffin granule-binding proteins. J. Biol. Chem. 262, 1860–1868.10.1016/S0021-9258(19)75719-6Search in Google Scholar

Datta, Y.H. and Ewenstein, B.M. (2001). Regulated secretion in endothelial cells: biology and clinical implications. Thromb. Haemost. 86, 1148–1155.10.1055/s-0037-1616043Search in Google Scholar

Disse, J., Vitale, N., Bader, M.F., and Gerke, V. (2009). Phospholipase D1 is specifically required for regulated secretion of von Willebrand factor from endothelial cells. Blood 113, 973–980.10.1182/blood-2008-06-165282Search in Google Scholar PubMed

Doyle, E.L., Ridger, V., Ferraro, F., Turmaine, M., Saftig, P., and Cutler, D.F. (2011). CD63 is an essential cofactor to leukocyte recruitment by endothelial P-selectin. Blood 118, 4265–4273.10.1182/blood-2010-11-321489Search in Google Scholar PubMed

Drucker, P., Pejic, M., Galla, H.J., and Gerke, V. (2013). Lipid segregation and membrane budding induced by the peripheral membrane binding protein annexin A2. J. Biol. Chem. 288, 24764–24776.10.1074/jbc.M113.474023Search in Google Scholar PubMed PubMed Central

Emeis, J.J., van den Eijnden-Schrauwen, Y., van den Hoogan, C.M., de Priester, W., Westmuckett, A., and Lupu, F. (1997). An endothelial storage granule for tissue-type plasminogen activator. J. Cell Biol. 139, 245–256.10.1083/jcb.139.1.245Search in Google Scholar PubMed PubMed Central

Ferraro, F., Kriston-Vizi, J., Metcalf, D.J., Martin-Martin, B., Freeman, J., Burden, J.J., Westmoreland, D., Dyer, C.E., Knight, A.E., Ketteler, R., et al. (2014). A two-tier Golgi-based control of organelle size underpins the functional plasticity of endothelial cells. Dev. Cell 29, 292–304.10.1016/j.devcel.2014.03.021Search in Google Scholar PubMed PubMed Central

Gabel, M. and Chasserot-Golaz, S. (2016). Annexin A2, an essential partner of the exocytotic process in chromaffin cells. J. Neurochem. 137, 890–896.10.1111/jnc.13628Search in Google Scholar PubMed

Gabel, M., Delavoie, F., Demais, V., Royer, C., Bailly, Y., Vitale, N., Bader, M.F., and Chasserot-Golaz, S. (2015). Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis. J. Cell Biol. 210, 785–800.10.1083/jcb.201412030Search in Google Scholar PubMed PubMed Central

Gerke, V. (2011). Von Willebrand factor folds into a bouquet. EMBO J. 30, 3880–3881.10.1038/emboj.2011.321Search in Google Scholar PubMed PubMed Central

Gerke, V. and Weber, K. (1984). Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein from brush borders; calcium-dependent binding to nonerythroid spectrin and F-actin. EMBO J. 3, 227–233.10.1002/j.1460-2075.1984.tb01789.xSearch in Google Scholar

Gerke, V. and Weber, K. (1985). The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific protein kinases is related in sequence to the S-100 protein of glial cells. EMBO J. 4, 2917–2920.10.1002/j.1460-2075.1985.tb04023.xSearch in Google Scholar

Goebeler, V., Ruhe, D., Gerke, V., and Rescher, U. (2006). Annexin A8 displays unique phospholipid and F-actin binding properties. FEBS Lett. 580, 2430–2434.10.1016/j.febslet.2006.03.076Search in Google Scholar

Goebeler, V., Poeter, M., Zeuschner, D., Gerke, V., and Rescher, U. (2008). Annexin A8 regulates late endosome organization and function. Mol. Biol. Cell 19, 5267–5278.10.1091/mbc.e08-04-0383Search in Google Scholar

Gokhale, N.A., Abraham, A., Digman, M.A., Gratton, E., and Cho, W. (2005). Phosphoinositide specificity of and mechanism of lipid domain formation by annexin A2-p11 heterotetramer. J. Biol. Chem. 280, 42831–42840.10.1074/jbc.M508129200Search in Google Scholar

Huck, V., Schneider, M.F., Gorzelanny, C., and Schneider, S.W. (2014). The various states of von Willebrand factor and their function in physiology and pathophysiology. Thromb. Haemost. 111, 598–609.10.1160/TH13-09-0800Search in Google Scholar

Iglesias, J.M., Cairney, C.J., Ferrier, R.K., McDonald, L., Soady, K., Kendrick, H., Pringle, M.A., Morgan, R.O., Martin, F., Smalley, M.J., et al. (2015). Annexin A8 identifies a subpopulation of transiently quiescent c-kit positive luminal progenitor cells of the ductal mammary epithelium. PLoS One 10, e0119718.10.1371/journal.pone.0119718Search in Google Scholar

Johnsson, N., Marriott, G., and Weber, K. (1988). p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 subunit via a short amino-terminal amphiphatic helix. EMBO J. 7, 2435–3442.10.1002/j.1460-2075.1988.tb03089.xSearch in Google Scholar

Jost, M. and Gerke, V. (1996). Mapping of a regulatory important site for protein kinase C phosphorylation in the N-terminal domain of annexin II. Biochim. Biophys. Acta 1313, 283–289.10.1016/0167-4889(96)00101-2Search in Google Scholar

Knop, M., Aareskjold, E., Bode, G., and Gerke, V. (2004). Rab3D and annexin A2 play a role in regulated secretion of vWF, but not tPA, from endothelial cells. EMBO J. 23, 2982–2992.10.1038/sj.emboj.7600319Search in Google Scholar PubMed PubMed Central

Konig, J., Prenen, J., Nilius, B., and Gerke, V. (1998). The annexin II-p11 complex is involved in regulated exocytosis in bovine pulmonary artery endothelial cells. J. Biol. Chem. 273, 19679–19684.10.1074/jbc.273.31.19679Search in Google Scholar

Lillicrap, D. (2013). von Willebrand disease: advances in pathogenetic understanding, diagnosis, and therapy. Blood 122, 3735–3740.10.1182/blood-2013-06-498303Search in Google Scholar

Lowenstein, C.J., Morrell, C.N., and Yamakuchi, M. (2005). Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc. Med. 15, 302–308.10.1016/j.tcm.2005.09.005Search in Google Scholar

Lui-Roberts, W.W., Collinson, L.M., Hewlett, L.J., Michaux, G., and Cutler, D.F. (2005). An AP-1/clathrin coat plays a novel and essential role in forming the Weibel-Palade bodies of endothelial cells. J. Cell Biol. 170, 627–636.10.1083/jcb.200503054Search in Google Scholar

Martin, T.F. (2012). Role of PI(4,5)P2 in vesicle exocytosis and membrane fusion. Subcell. Biochem. 59, 111–130.10.1007/978-94-007-3015-1_4Search in Google Scholar

Matsushita, K., Morrell, C.N., Cambien, B., Yang, S.X., Yamakuchi, M., Bao, C., Hara, M.R., Quick, R.A., Cao, W., O’Rourke, B., et al. (2003). Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115, 139–150.10.1016/S0092-8674(03)00803-1Search in Google Scholar

McEver, R.P. (2015). Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc. Res. 107, 331–339.10.1093/cvr/cvv154Search in Google Scholar PubMed PubMed Central

Menke, M., Ross, M., Gerke, V., and Steinem, C. (2004). The molecular arrangement of membrane-bound annexin A2-S100A10 tetramer as revealed by scanning force microscopy. Chembiochem 5, 1003–1006.10.1002/cbic.200400004Search in Google Scholar PubMed

Metcalf, D.J., Nightingale, T.D., Zenner, H.L., Lui-Roberts, W.W., and Cutler, D.F. (2008). Formation and function of Weibel-Palade bodies. J. Cell Sci. 121, 19–27.10.1242/jcs.03494Search in Google Scholar PubMed

Michaux, G. and Cutler, D.F. (2004). How to roll an endothelial cigar: the biogenesis of Weibel-Palade bodies. Traffic 5, 69–78.10.1111/j.1600-0854.2004.00157.xSearch in Google Scholar PubMed

Michaux, G., Abbitt, K.B., Collinson, L.M., Haberichter, S.L., Norman, K.E., and Cutler, D.F. (2006). The physiological function of von Willebrand’s factor depends on its tubular storage in endothelial Weibel-Palade bodies. Dev. Cell 10, 223–232.10.1016/j.devcel.2005.12.012Search in Google Scholar

Moss, S.E. and Morgan, R.O. (2004). The annexins. Genome. Biol. 5, 219.10.1016/S0962-8924(96)10049-0Search in Google Scholar

Nazmi, A.R., Ozorowski, G., Pejic, M., Whitelegge, J.P., Gerke, V., and Luecke, H. (2012). N-terminal acetylation of annexin A2 is required for S100A10 binding. Biol. Chem. 393, 1141–1150.10.1515/hsz-2012-0179Search in Google Scholar PubMed

Nightingale, T. and Cutler, D. (2013). The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J. Thromb. Haemost. 11(Suppl 1), 192–201.10.1111/jth.12225Search in Google Scholar PubMed PubMed Central

Nightingale, T.D., Pattni, K., Hume, A.N., Seabra, M.C., and Cutler, D.F. (2009). Rab27a and MyRIP regulate the amount and multimeric state of VWF released from endothelial cells. Blood 113, 5010–5018.10.1182/blood-2008-09-181206Search in Google Scholar PubMed PubMed Central

Poeter, M., Brandherm, I., Rossaint, J., Rosso, G., Shahin, V., Skryabin, B.V., Zarbock, A., Gerke, V., and Rescher, U. (2014). Annexin A8 controls leukocyte recruitment to activated endothelial cells via cell surface delivery of CD63. Nat. Commun. 5, 3738.10.1038/ncomms4738Search in Google Scholar PubMed

Pulido, I.R., Jahn, R., and Gerke, V. (2011). VAMP3 is associated with endothelial weibel-palade bodies and participates in their Ca2+-dependent exocytosis. Biochim. Biophys. Acta 1813, 1038–1044.10.1016/j.bbamcr.2010.11.007Search in Google Scholar PubMed

Raposo, G., Marks, M.S., and Cutler, D.F. (2007). Lysosome-related organelles: driving post-Golgi compartments into specialisation. Curr. Opin. Cell Biol. 19, 394–401.10.1016/j.ceb.2007.05.001Search in Google Scholar PubMed PubMed Central

Rescher, U. and Gerke, V. (2004). Annexins – unique membrane binding proteins with diverse functions. J. Cell Sci. 117, 2631–2639.10.1242/jcs.01245Search in Google Scholar PubMed

Rojo Pulido, I., Nightingale, T.D., Darchen, F., Seabra, M.C., Cutler, D.F., and Gerke, V. (2011). Myosin Va acts in concert with Rab27a and MyRIP to regulate acute von-Willebrand factor release from endothelial cells. Traffic 12, 1371–1382.10.1111/j.1600-0854.2011.01248.xSearch in Google Scholar PubMed

Romani de Wit, T., Rondaij, M.G., Hordijk, P.L., Voorberg, J., and van Mourik, J.A. (2003). Real-time imaging of the dynamics and secretory behavior of Weibel-Palade bodies. Arterioscler Thromb. Vasc. Biol. 23, 755–761.10.1161/01.ATV.0000069847.72001.E8Search in Google Scholar PubMed

Rondaij, M.G., Bierings, R., Kragt, A., van Mourik, J.A., and Voorberg, J. (2006). Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb. Vasc. Biol. 26, 1002–1007.10.1161/01.ATV.0000209501.56852.6cSearch in Google Scholar PubMed

Rondaij, M.G., Bierings, R., van Agtmaal, E.L., Gijzen, K.A., Sellink, E., Kragt, A., Ferguson, S.S., Mertens, K., Hannah, M.J., van Mourik, J.A., et al. (2008). Guanine exchange factor RalGDS mediates exocytosis of Weibel-Palade bodies from endothelial cells. Blood 112, 56–63.10.1182/blood-2007-07-099309Search in Google Scholar PubMed

Sadler, J.E. (1998). Biochemistry and genetics of von-Willebrand factor. Annu. Rev. Biochem 67, 395–424.10.1146/annurev.biochem.67.1.395Search in Google Scholar PubMed

Sadler, J.E. (2008). Von Willebrand factor, ADAMTS13, and thrombotic thrombocytopenic purpura. Blood 112, 11–18.10.1182/blood-2008-02-078170Search in Google Scholar PubMed PubMed Central

Sadler, J.E. (2009). von Willebrand factor assembly and secretion. J. Thromb. Haemost. 7, 24–27.10.1111/j.1538-7836.2009.03375.xSearch in Google Scholar PubMed

Schneppenheim, R. and Budde, U. (2011). von Willebrand factor: the complex molecular genetics of a multidomain and multifunctional protein. J. Thromb. Haemost. 9(Suppl 1), 209–215.10.1111/j.1538-7836.2011.04324.xSearch in Google Scholar PubMed

Springer, T.A. (2014). von Willebrand factor, Jedi knight of the bloodstream. Blood 124, 1412–1425.10.1182/blood-2014-05-378638Search in Google Scholar PubMed PubMed Central

Umbrecht-Jenck, E., Demais, V., Calco, V., Bailly, Y., Bader, M.F., and Chasserot-Golaz, S. (2010). S100A10-mediated translocation of annexin-A2 to SNARE proteins in adrenergic chromaffin cells undergoing exocytosis. Traffic 11, 958–971.10.1111/j.1600-0854.2010.01065.xSearch in Google Scholar PubMed

Valentijn, K.M. and Eikenboom, J. (2013). Weibel-Palade bodies: a window to von Willebrand disease. J. Thromb. Haemost. 11, 581–592.10.1111/jth.12160Search in Google Scholar PubMed

van Breevoort, D., van Agtmaal, E.L., Dragt, B.S., Gebbinck, J.K., Dienava-Verdoold, I., Kragt, A., Bierings, R., Horrevoets, A.J., Valentijn, K.M., Eikenboom, J.C., et al. (2012). Proteomic screen identifies IGFBP7 as a novel component of endothelial cell-specific Weibel-Palade bodies. J. Proteome. Res. 11, 2925–2936.10.1021/pr300010rSearch in Google Scholar PubMed

van Breevoort, D., Snijders, A.P., Hellen, N., Weckhuysen, S., van Hooren, K.W., Eikenboom, J., Valentijn, K., Fernandez-Borja, M., Ceulemans, B., De Jonghe, P., et al. (2014). STXBP1 promotes Weibel-Palade body exocytosis through its interaction with the Rab27A effector Slp4-a. Blood 123, 3185–3194.10.1182/blood-2013-10-535831Search in Google Scholar PubMed

Wagner, D.D. and Frenette, P.S. (2008). The vessel wall and its interactions. Blood 111, 5271–5281.10.1182/blood-2008-01-078204Search in Google Scholar PubMed PubMed Central

Weibel, E.R. and Palade, G.F. (1964). New cytoplasmic components in arterial endothelia. J. Cell Biol. 23, 101–112.10.1083/jcb.23.1.101Search in Google Scholar PubMed PubMed Central

Zografou, S., Basagiannis, D., Papafotika, A., Shirakawa, R., Horiuchi, H., Auerbach, D., Fukuda, M., and Christoforidis, S. (2012). A complete Rab screening reveals novel insights in Weibel-Palade body exocytosis. J. Cell Sci. 125, 4780–4790.Search in Google Scholar

Received: 2016-5-11
Accepted: 2016-7-18
Published Online: 2016-7-23
Published in Print: 2016-10-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2016-0207/html
Scroll to top button