Confirmation of the Effectiveness and Genetic Positions of Disease Resistance Loci in ‘Kishmish Vatkana’ (Ren1) and ‘Villard Blanc’ (Ren3 and Rpv3)

  • R. Veikondis Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
  • P. Burger ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
  • A. Vermeulen ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
  • C.J. Van Heerden Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa http://orcid.org/0000-0003-1786-7527
  • R. Prins CenGen Pty Ltd http://orcid.org/0000-0001-9775-6709

Abstract

This study aimed to validate the effectiveness and to genetically characterise the fungal disease resistance genes of ‘Kishmish Vatkana’ and ‘Villard Blanc’ in South Africa using microsatellite (SSR) markers and
a Quantitative Trait Loci (QTL) approach. An F1 ‘Sunred Seedless’ × ‘Kishmish Vatkana’ cross was used to generate a partial linkage map for chromosome 13 known to harbour the Ren1 powdery mildew locus
of ‘Kishmish Vatkana’. The effectiveness of this locus was validated, explaining between 44.8% and 57.7% of the observed phenotypic variance. An F1 ‘Villard Blanc’ × ‘G1-6604’ cross was used to generate partial linkage maps for chromosomes 15 and 18, reported to harbour fungal resistance genes of ‘Villard Blanc’.  The powdery mildew QTL (Ren3) was validated on chromosome 15 of ‘Villard Blanc’, which explained
between 18.9% and 23.9% of the phenotypic variance observed. The downy mildew resistance QTL on chromosome 18 (Rpv3) of ‘Villard Blanc’ was also confirmed, and it explained between 19.1% and 21.2%
of the phenotypic variance observed. This molecular information and individual sources of resistance have already been implemented in the marker-assisted selection (MAS) and gene pyramiding efforts of the table
grape breeding program of the Agricultural Research Council (ARC) Infruitec-Nietvoorbij.

Downloads

Download data is not yet available.

Author Biographies

R. Veikondis, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
Analyst CAF
P. Burger, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South Africa
Table grape breeder
C.J. Van Heerden, Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
Staff Scientist CAF
R. Prins, CenGen Pty Ltd
Director

References

Akkurt, M., Welter, L., Maul, E., Töpfer, R. & Zyprian, E., 2007. Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L and Vitis sp). Molecular Breeding 19:103-111.

Alleweldt, G., Spiegel-Roy, P. & Reisch, B. (1990). Grapes (Vitis). In: Moore, I.N., Ballington, J.L. (eds). Genetic resources of temperate fruit and nut crops. Acta Horticulturae 290:291-327.

Aradhya, M.K., Dangl, G.S., Prins, B.H., Boursiquot, J-M., Walker, M.A., Meredith, C.P. & Simon, C.J., 2003. Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genetic Resistance, Cambridge 81:179-192.

Barba, P., Cadle‑Davidson, L., Harriman, J., Glaubitz, J.C., Brooks, S., Hyma, K. & Reisch, B., 2014. Grapevine powdery mildew resistance and susceptibility loci identified on a high‑resolution SNP map. Theoretical Applied Genetics 127:73–84.

Brown, M.V., Moore, J.N., Fenn, P. & McNew, R.W., 1999. Comparison of leaf disk, greenhouse and field screening procedures for evaluation of grape seedlings for downy mildew resistance. Horticultural Science 34:331-333.

Bellin, D., Peressotti, E., Merdinoglu, D., Wiedemann-Merdinoglu, S., Adam-Blondon, A-F., Cipriani, G., Morgante, M., Testolin, R. & Di Gaspero, G., 2009. Resistance to Plasmopara viticola in grapevine 'Bianca' is controlled by a major dominant gene causing necrosis at the infection site. Theoretical Applied Genetics 120:163-176.

Cartwright, D.A., Troggio, M., Velasco, M. & Gutin, A., 2007. Genetic mapping in the presence of genotyping errors. Genetics Society of America 2521-2527.

Coleman, C., Copetti, D., Cipriani, G., Hoffmann, S., Kozma, P., Kovács, L., Morgante, M., Testolin, R. & Di Gaspero, G., 2009. The powdery resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genetics 10:89.

Csizmazia, J. & Bereznai, L., 1968. A szo˜lo˜ Plasmopara viticola e´s a Viteus vitifolii elleni rezisztencia nemesite´s eredme´nyei. Orsz Szo˜l Bor Kut Int E ´ vko¨nyve, Budapest:191–200.

Eibach, R. & Töpfer, R., 2003. Success in Resistance Breeding: „REGENT“ and its Steps into the Market. Proceedings of VIIIth International Conference on Grape. Acta Horticulturae 603: 687-691, ISHS 2003.

Eibach, R., Zyprian, E., Welter, L.J. & Töpfer, R., 2007. The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120-124.

Filler, D.M., Luby, J.J & Ascher, P.D., 1994. Incongruity in the interspecific crosses of Vitis L. morphological abnormalities in the F2 progeny. Euphytica 78:227-237.

Fourie, P,. 2003. Downy mildew on grapevine. Vesuvius. Cape Town.

Gadoury, D.M., Cadle-Davidson, L., Wilcox, W.F., Dry, I.B., Seem, R.C. & Milgroom, M.G., 2012. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Molecular Plant Pathology 13(1):1-16.

Gessler, C., Pertot, I. & Perazzolli, M., 2011. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathologia Mediterranea 50:3-44.

Giuntoli, A. & Orlandini, S., 2000. Effects of downy mildew on photosynthesis of grapevine leaves. Proceedings of the V international Symposium on Grapevine Physiology Acta Horticulturae 526:461-466.

Gray, D.J., Li, Z.T. & Dhekney, S.A., 2014. Precision breeding of grapevine (Vitis vinifera L.) for improved traits. Plant Science 228 (2014) 3–10.

Harst, M., Bornhoff, B.A. & Töpfer, R., 2009. Investigations of pollen dispersal and out-crossing events using transgenic grapevines: a pilot study. In: Peterlunger, E. et al (eds). Proceedings of the IXth International Conference on Grape Genetics and Breeding. Acta Horticulturae. 827:505-510.

Halleen, F., 2003. Poeieragtige meeldou in wingerd.Vesuvius. Cape Town.

Hoffmann, S., Di Gaspero, G., Kovács, L., Howard, S., Kiss, E., Galbács, Z., Testolin, R. & Kozma, P., 2008. Resistance to Erysiphe necator in the grapevine 'Kishmish vatkana' is controlled by a single locus through restriction of hyphal growth. Theoretical Applied Genetics 116:427-238.

Iwata, I., Minamikawa, M.F., Kajiya-Kanegae, H. & Ishimori, M., 2016.Genomics-assisted breeding in fruit trees. Breeding Science 66:100-115.

Kozma, P., Kiss, E., Hoffmann, S., Galbács, Z., & Dula, T., 2009. Using the powdery mildew resistant Muscadinia rotundifolia and Vitis vinifera 'Kishmish vatkana' for breeding new cultivars. In: Peterlunger, E. et al (eds). Proceedings of the IXth International Conference on Grape Genetics and Breeding. Acta Horticulturae. 827559-564.

Organisation Internationale de la Vigne et du Vin (OIV), 2007. 2nd Edition of the OIV descriptor list for grape varieties and Vitis species. www.oiv.int/oiv/...%201%20Publications%20OIV/.../5-1-9_Liste_descripteurs_2ed_EN.pdf.

Pavloušek, P., 2007. Evaluation of resistance to powdery mildew in grapevine genetic resources. Journal of Central European Agriculture 8:105-114.

Pazzi, F., 2008. Genetically modified grapevine: state of research, possible risks and future scenario. http://www.fondazionedirittigenetici.org/vitevita/rapporto_en.pdf.

Pernesz, G., 2004. New resistant table grape cultivars bred in Hungary. In: De Sequeira ÓA, Sequeira, JC (eds) Ist International Symposium on grapevine. Acta Horticulturae 652:321-327.

Riaz, S., Boursiquot, J-M., Dangl, G.S., Lacombe, T., Laucou, V., Tenscher A.C. & Walker, A.M., 2013. Identification of mildew resistance in wild and cultivated Central Asian grape germplasm. Biomedcentral Plant Biology 2013, 13:149

Troggio, M., Vezzulli, S., Pindo, M., Malacarne, G., Fontana, P., Moreira, F.M., Costantini, L., Grando, M.S., Viola, R. & Velasco, R., 2008. Beyond the Genome, Opportunities for a modern viticulture: a research overview. American Journal of Enology and Viticulture 59:2:117-127.

Van Heerden, C.J., Burger, P., Vermeulen, A., Prins, R., 2014. Detection of downy and powdery mildew resistance QTL in a ‘Regent’ × ‘RedGlobe’ population. Euphytica (2014) 200:281-295.

Van Ooijen, J.W., 2006. JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma, B.V. (eds). Wageningen. Netherlands.

Van Ooijen, J.W. 2009., MapQTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma, B.V. (eds). Wageningen. Netherlands.

Van Ooijen, J.W., 2011. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genetic Resistance Cambridge 93:343-349.

Zyprian, E., Eibach, R. & Töpfer, R., 2003. Comparative molecular mapping in segregating populations of grapevine. In: Hajdu, E. & Borbás, É. (eds). Proceedings of the VIIIth International Symposium on Grape Acta Horticulturae 603:73-77.

Zyprian, E., Welter, L.J., Akkurt, M., Töpfer, R., Ebert, S., Salakhutdinov, I., Göktürk-Baydar, N. & Eibach, R., 2009. Genetic analysis of fungal disease resistance in grapevine. In Peterlunger, E. et al. (eds). Proceedings of IXth International Conference on Grape Genetics and Breeding Acta Horticulturae 827:535-538.

Zyprian, E., Ochβner, I., Schwander, F., Šimon, S., Haussmann, L., Bonow-Rex, M., Moreno-Sanz, P., Grando, M.S., Wiedemann-Merdinoglu, S., Merdinoglu, D., Eibach, R. & Töpfer, R., 2016. Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Molecular Genetics and Genomics DOI 10.1007/s00438-016-1200-5

Published
2018-10-05
Section
Articles