Skip to main content
Log in

The Role of PUVA in the Treatment of Psoriasis

Photobiology Issues Related to Skin Cancer Incidence

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Photochemotherapy with methoxsalen (8-methoxypsoralen) and long wavelength ultraviolet (UV) radiation (referred to as ‘PUVA’ for psoralen plus UVA) is commonly used to treat psoriasis and vitiligo. These vastly different diseases respond to the therapy by different mechanisms even though the immediate effects of the therapy — the photomodification of cellular biomolecules — is the same for each. Because psoriasis is not cured by PUVA, patients receive many treatments over their lifetime and have a significantly increased risk for the development of skin cancers (primarily squamous cell carcinomas). In this article the basic aspects of psoralen photobiology are reviewed briefly. Several recent studies describing the incidence of skin cancer in UVA treated psoriasis cohorts are comparatively reviewed. In addition the impact of the analysis of mutations in the tumor suppressor gene, p53, are summarized. An unexpected mutation spectrum (very few PUVA type T→A transversions and frequent UVB solar signature C→T transitions) suggest that effects other than direct DNA photoadduct formation may be at play. These analyses suggest that it may be possible to improve the therapeutic efficacy of PUVA by a careful evaluation of the mode of delivery. In this review the science behind PUVA is summarized. In addition, the incidence of skin cancer as a long term consequence of repeated treatments is surveyed. To relate clinical observations to molelcular events, the nature of p53 mutations found in skin cancers from psoriasis patients is also analyzed. Finally some suggestions for improving the delivery of PUVA therapy are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Table I
Table II

Similar content being viewed by others

Notes

  1. Morison et al.[5] and Halpern[6] summarize the most recent deliberations of PUVA specialists in the US and the UK, respectively.

  2. These base reactivity preferences are based on the analysis of photoadduct formation in solutions of methoxsalen and DNA in vitro. Cellular reaction patterns could differ due to the packaging of DNA in the nucleus.[15]

  3. Based on the analysis of hprt mutations in diploid human skin fibroblasts, Burger and Simons[33] estimated that the cumulative number of methoxsalen plus UVA mutagenic events expected to occur in human skin was 1.2 × 10−5 per photochemotherapy session and 1.3 × 10−2 per cell during 30 years of maintenance (100 times greater than the spontaneous rate of mutations).

References

  1. Fitzpatrick T.B., Pathank M.A. Research and development of oral psoralen and longwave radiation photochemotherapy: 2000 B.C.–1982 A.D. Natl Cancer Inst Monogr 1984; 66: 3–11

    PubMed  CAS  Google Scholar 

  2. El Mofty A.M. A preliminary clinical report on the treatment of leukoderma with Ammi majus linn. JR Egypt Med Assn 1948; 31: 651–665

    Google Scholar 

  3. Bethea D., Fullmer B., Syed S, et al. Psoralen photobiology and photochemotherapy: 50 years of science and medicine. J Dermatol Sci 1999: 19: 78–88

    Article  PubMed  CAS  Google Scholar 

  4. Peritz A.E., Gasparro F.P. Psoriasis, PUVA and skin cancer— molecular epidemiology: the curious question of T→A transversions. J Investig Dermatol Symp Proc 1999; 4: 11–16

    Article  PubMed  CAS  Google Scholar 

  5. Morison W.L., Baughman S.D., Day R.M., et al. Consensus workshop on the toxic effects of long-term PUVA therapy. Arch Dermatol 1998; 134: 595–598

    Article  PubMed  CAS  Google Scholar 

  6. Halpern S.M. Guidelines for topical PUVA: a report of a workshop of the British photodermatology group. Br J Dermatol 2000; 142: 22–31

    Article  PubMed  CAS  Google Scholar 

  7. Koo J.Y. Current consensus and update on psoriasis therapy: a perspective from the US. J Dermatol 1999; 26: 723–733

    PubMed  CAS  Google Scholar 

  8. Karasek M.A. Progress in our understanding of the biology of psoriasis. Cutis 1999; 64: 319–322

    PubMed  CAS  Google Scholar 

  9. Nickoloff B.J. The immunologic and genetic basis of psoriasis. Arch Dermatol 1999; 133: 1104–1110

    Article  Google Scholar 

  10. Honigsmann H., Fitzpatrick T.B., Pathak M.A., et al. Oral photochemotherapy with psoralen and UVA (PUVA): principles and practice. In: Fitzpatrick T.B., Eisen A.Z., Wolf K., editors. Dermatology in general medicine. New York: McGraw- Hill, 1987; 1728–1754

    Google Scholar 

  11. Parrish J.A., Fitzpatrick T.B., Tannenbaum L., et al. Photochemotherapy of psoriasis with oral methoxsalen and long-wave ultraviolet light. N Engl J Med 1974; 291: 1207–1211

    Article  PubMed  CAS  Google Scholar 

  12. Edelson R.L., Berger C.L., Gasparro F.P., et al. Treatment of cutaneous T cell lymphoma by extracorporeal photochemotherapy. N Engl J Med 1987; 316: 297–303

    Article  PubMed  CAS  Google Scholar 

  13. Moor A.C.E., F.P. Gasparro. Biochemical aspects of psoralen photochemotherapy. Clin Dermatol 1996; 4: 353–356

    Article  Google Scholar 

  14. Musajo L., Rodighiero G., Breccia A., et al. The photoreactions between DNA and the skin-photosensitizing furocoumarin studied using labeled bergapten. Experientia 1968; 22: 75–78

    Article  Google Scholar 

  15. Boyer V., Moustacchi E., Sage E. Sequence specificity in photoreaction of various psoralen derivatives with DNA: role in biological activity. Biochemistry 1988: 19: 3011–3018

    Article  Google Scholar 

  16. Yun M.H., Choi S.J., Shim S.C. A novel photoadduct of 4,5t′,8-trimethylpsoralen and adenosine. Photochem Photobiol 1992; 55: 457–4560

    Article  PubMed  CAS  Google Scholar 

  17. Liu Z., Lu Y., Lebwohl M., et al. PUVA (8-methoxypsoralen plus ultraviolet A) induces the formation of 8-hydroxy-2′-deoxyguanosine and DNA fragmentation in calf thymus DNA and human epidermoid carcinoma cells. Free Rad Biol Med 1999; 27: 127–133

    Article  PubMed  CAS  Google Scholar 

  18. Kreutzer D.A., Essigmann J.M. Oxidized, deaminated cytosines are a source of C?T transitions in vivo. Proc Natl Acad Sci USA 1998; 95: 3578–3582

    Article  PubMed  CAS  Google Scholar 

  19. Frederiksen S., Hearst J.E. Binding of 4t′-aminomethyl-4,5t′,8-trimethylpsoralen to DNA, RNA and protein in HeLa cells and Drosophila cells. Biochem Biophys Acta 1979; 563: 343–355

    Article  PubMed  CAS  Google Scholar 

  20. Johnson R., Staiano-Coico L., Austin L., et al. PUVA treatment selectively induces a cell cycle block and subsequent. apoptosis in human T-lymphocytes. Photochem Photobiol 1996; 63: 566–571

    Article  PubMed  CAS  Google Scholar 

  21. Vallat V.P., Gilleaudeau P., Battat L. PUVA bath therapy strongly suppresses immunological and epidermal activation in psoriasis: a possible cellular basis for remittive therapy. J Exp Med 1994; 180: 283–296

    Article  PubMed  CAS  Google Scholar 

  22. Strauss G.H., Albertini R.J., Krusinski P.A., et al. 6-Thioguanine resistant peripheral blood lymphocytes in human s following psoralen, long-wave ultraviolet light (PUVA) therapy. J Invest Dermatol 1979; 73: 211–216

    Article  PubMed  CAS  Google Scholar 

  23. Sage E., Bredberg A. Damage distribution and mutation spectrum: the case of 8-methoxy- psoralen and UVA in mammalian cells. Mutat Res 1991; 263: 217–222

    Article  PubMed  CAS  Google Scholar 

  24. Yang S.C., Lin J.G., Chiou C.C., et al. Mutation specificity of 8-methoxypsoralen plus two doses of UVA irradiation in the hprt gene in diploid human fibroblasts. Carcinogenesis 1994; 15: 201–207

    Article  PubMed  CAS  Google Scholar 

  25. Bredberg A., Nachmansson N. Psoralen adducts in a shuttle vector plasmid propagated in primate cells: high mutagenicity of DNA cross-links. Carcinogenesis 1987; 8: 1923–1927

    Article  PubMed  CAS  Google Scholar 

  26. Gunther E.J., Yeasky T.M., Gasparro F.P., et al. Mutagenesis by 8-methoxypsoralen and 5-methylangelicin photoadducts in mouse fibroblasts: mutations at cross-linkable sites induced by monoadducts as well as cross-links. Cancer Res 1995; 55: 1283–1288

    PubMed  CAS  Google Scholar 

  27. Lindelof B., Sigurgeirsson B. PUVA and cancer: a case-control study. Br J Dermatol 1993; 129: 39–41

    Article  PubMed  CAS  Google Scholar 

  28. Stern R.S., Laird N., Melski J., et al. Cutaneous squamous-cell carcinoma in patients treated with PUVA. N Engl J Med 1984; 310: 1156–1161

    Article  PubMed  CAS  Google Scholar 

  29. Stern R.S., Laird N. The carcinogenic risk of treatments for severe psoriasis. Cancer 1994; 73: 2759–2764

    Article  PubMed  CAS  Google Scholar 

  30. Stern R.S., Liebman E.J., Väkevä L., et al. Oral psoralen and ultraviolet A (PUVA) treatment of psoriasis and persistent risk of nonmelanoma skin cancer. J Natl Cancer Inst 1998; 90: 1278–1284

    Article  PubMed  CAS  Google Scholar 

  31. Studniberg H.M., Weller P. PUVA, UVB, psoriasis and nonmelanoma cancer. J Am Acad Dermatol 1993; 29: 1013–1022

    Article  PubMed  CAS  Google Scholar 

  32. Tokura Y., Edelson R.L., Gasparro F.P. Formation and removal of 8-MOP-DNA photoadducts in keratinocytes: effects of calcium concentration and retinoids. J Invest Dermatol 1991; 96: 942–949

    Article  PubMed  CAS  Google Scholar 

  33. Burger P.M., Simons J.W.I.M. Mutagenicity of 8-methoxypsoralen and long-wave ultraviolet irradiation in haploid human skin fibroblasts: an improved risk estimate in photochemotherapy. Mutat Res 1979; 63: 371–380

    Article  PubMed  CAS  Google Scholar 

  34. Stern R.S., Nichols K.T., Vakeva L.H., et al. Malignant melanoma in patients treated for psoriasis with methoxsalen (psoralen) and ultraviolet A radiation (PUVA). N Engl J Med 1997; 336: 1041–1045

    Article  PubMed  CAS  Google Scholar 

  35. Hannuksela-Svahn A., Pukkala E., Koulu L., et al. Cancer incidence among finnish psoriasis patients treated with 8-methoxypsoralen bath PUVA. J Am Acad Dermatol 1999; 40: 694–696

    Article  PubMed  CAS  Google Scholar 

  36. Lindelof B., Sigurgeirsson B., Tegner E., et al. PUVA and cancer risk: the Swedish follow-up study. Br J Dermatol 1999; 141: 108–112

    Article  PubMed  CAS  Google Scholar 

  37. Hannuksela-Svahn A., Pukkala E., Laara E., et al. Psoriasis, its treatment, and cancer in a cohort of Finnish patients. J Invest Dermatol 2000; 114: 587–590

    Article  PubMed  CAS  Google Scholar 

  38. Hannuksela-Svahn A., Sigurgeirsson B., Pukkala E., et al. Trioxsalen bath PUVA did not increase the risk of squamous cell skin carcinoma and cutaneous malignant melanoma in a joint analysis of 944 Swedish and Finnish patients with psoriasis. Br J Dermatol 1999; 141: 497–501

    Article  PubMed  CAS  Google Scholar 

  39. Donath P., Bethea D., Amici L., et al. Low and irreproducible methoxsalen levels in patients receiving photochemotherapy. Arch Dermatol 1999; 135: 604–606

    Article  PubMed  CAS  Google Scholar 

  40. Shephard S.E., Panizzon R.G. Carcinogenic risk of bath PUVA in comparison to oral PUVA therapy. Dermatol 1999; 199: 106–112

    Article  CAS  Google Scholar 

  41. Guo Z., Okamoto H., Danno K., et al. The effects of non-interval PUVA treatment on Langerhans cells and contact hypersensitivity. J Dermatol Sci 1992; 3: 91–96

    Article  PubMed  CAS  Google Scholar 

  42. Nataraj A.J., Black H.S., Ananthswamy H.N. Signature p53 mutations at DNA crosslinking sites in 8-methoxypsoralen and ultraviolet A (PUVA)-induced murine skin cancers. Proc Natl Acad Sci USA 1996; 93: 7961–7965

    Article  PubMed  CAS  Google Scholar 

  43. Wang X.M., McNiff J.M., Klump V., et al. An unexpected spectrum of p53 mutations from squamous cell carcinomas in patients treated with PUVA. Photochem Photobiol 1997; 66: 294–299

    Article  PubMed  CAS  Google Scholar 

  44. Nataraj A.J., Wolf P., Cerroni L., et al. P53 mutations in squamous cell carcinomas from psoriasis patients treated with psoralen + UVA (PUVA): relative frequency of PUVA- versus UV-signature mutations. J Invest Dermatol 1997; 109: 238–243

    Article  PubMed  CAS  Google Scholar 

  45. Sagher D., Strauss B. Insertion of nucleotides opposite apurine/apyrmidinic sites in deoxyribonucleic acid during in vitro synthesis: uniqueness of adenine nucleotides. Biochem 1983; 22: 4518–4526

    Article  CAS  Google Scholar 

  46. Greenblatt M.S., Bennett W.P., Hollstein M., et al. Mutations in p53 tumor suppression gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994; 54: 4855–4578

    PubMed  CAS  Google Scholar 

  47. Monti P., Inga A., Aprile A., et al. p53 mutations experimentally induced by 8-methoxypsoralen plus UVA (PUVA) differ from those found in human skin cancers in PUVA-treated patients. Mutagenesis 2000; 15: 127–132

    Article  PubMed  CAS  Google Scholar 

  48. Peritz A., Douglass M.C., McNiff J., et al. Analysis of p53 mutations based on microdissection of tumor bioipsies from psoriasis patients treated with PUVA. Photochem Photobiol 1999; 70: 29s–30s

    Google Scholar 

  49. Kripke M.L. Effects of methoxsalen plus near-ultraviolet radiation or mid-ultraviolet radiation on immunologic mechanisms. Natl Cancer Inst Monogr 1984; 66: 247–251

    PubMed  CAS  Google Scholar 

  50. Kumar J.R., Haberman H.F., Ranadive N.S. Comparative studies on the tolerance to photoinduced cutaneous inflammatory reactions by psoralen and rose bengal. J Photochem Photobiol B 1997; 37: 245–253

    Article  PubMed  CAS  Google Scholar 

  51. Miller R.A. Gerontology as oncology. Research on aging as the key to the understanding of cancer. Cancer 1991; 68 Suppl. 11: 2496–2501

    Article  PubMed  CAS  Google Scholar 

  52. Gasparro F.P. Extracorporeal photochemotherapy: clinical aspects and the molecular basis for efficacy. RG Landes Co, Medical Intelligence Unit, 1994

    Google Scholar 

  53. Fischer T., Alsins J. Treatment of psoriasis with trioxsalen baths and dysprosium lamps. Acta Derm Venereol Stockholm 1976; 56: 383–390

    CAS  Google Scholar 

  54. Bolognia J.L., Freije L., Amici L., et al. Rectal suppositories of 8-methoxypsoralen produce ewer gastrointestinal side effects than the oral formulation. J Am Acad Dermatol 1996; 35: 424–427

    Article  PubMed  CAS  Google Scholar 

  55. Stolk L., Siddiqui A.H., Kammeyer A., et al. Serum and saliva levels of 8- methoxypsoralen after rectal administration as a micro-enema. Br J Dermatol 1981; 104: 447–451

    Article  PubMed  CAS  Google Scholar 

  56. Billard V., Gambus P.L., Baar J., et al. The pharmacokinetics of 8-methoxypsoralen following i.v. administration in humans. Br J Clin Pharmacol 1995; 40: 347–360

    Article  PubMed  CAS  Google Scholar 

  57. Knobler R.M., Trautinger F., Graninger W., et al. Parenteral administration of 8- methoxypsoralen in photopheresis. J Am Acad Dermatol 1993; 28: 580–584

    Article  PubMed  CAS  Google Scholar 

  58. Bachynsky M.O., Infeld M.H., Margolic R.L., et al. Psoralen formulation for UV-A photopheresis. Eur Pat Appl EP 392, 429; US Appl 336, 179, 1990

    Google Scholar 

  59. Neild V.S., Scott L.V. Plasma levels of 8-methoxypsoralen in psoriatic patients receiving topical 8-methoxypsoralen. Br J Dermatol 1982; 106: 199–203

    Article  PubMed  CAS  Google Scholar 

  60. Pham C.T., Koo J.Y. Plasma levels of 8-methoxypsoralen after topical paint PUVA. J Am Acad Dermatol 1993; 28: 460–466

    Article  PubMed  CAS  Google Scholar 

  61. Cristofolini M., Recchia G., Boi S., et al. 6-Methylangelicins: new monofunctional photochemotherapeutic agents for psoriasis. Br J Dermatol 1990; 122: 513–524

    Article  PubMed  CAS  Google Scholar 

  62. Tanew A. Half-side comparison of erythemogenic versus suberythemogenic UVA doses in oral photochemotherapy of psoriasis. J Am Acad Dermatol 1999; 41: 408–413

    Article  PubMed  CAS  Google Scholar 

  63. Ortel B., Perl S., Kinaciyan T., et al. Comparison of narrow-band (311 nm) UVB and broad-band UVA after oral or bath-water 8-methoxypsoralen in the treatment of psoriasis. J Am Acad Dermatol 1993; 29: 736–740

    Article  PubMed  CAS  Google Scholar 

  64. Filipe P., Emerit I., Youssefl A.A., et al. Oxyradical-mediated clastogenic plasma factors in psoriasis. Increases in clastogenic activity after PUVA. Photochem Photobiol 1997; 66: 497–501

    Article  PubMed  CAS  Google Scholar 

  65. Taylor C.R., Kwangsukstith C., Wimberly J., et al. Turbo-PUVA: dihydroxyacetoneenhanced photochemotherapy for psoriasis: a pilot study. Arch Dermatol 1999; 135: 540–544

    Article  PubMed  CAS  Google Scholar 

  66. Streit V., Wiedow O., Christophers E. Treatment of psoriasis with polyethylene sheet bath PUVA. J Am Acad Dermatol 1996; 35: 208–210

    Article  PubMed  CAS  Google Scholar 

  67. Murphy G.M. Skin cancer in patients with psoriasis-many intertwined risk factors. Br J Dermatol 1999; 141: 1001–1002

    Article  PubMed  CAS  Google Scholar 

  68. Al-Suwaidan S.N., Feldman S.R. Clearance is not a realistic expectation of psoriasis treatment. J Am Acad Dermatol 2000; 42: 796–802

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis P. Gasparro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasparro, F.P. The Role of PUVA in the Treatment of Psoriasis. Am J Clin Dermatol 1, 337–348 (2000). https://doi.org/10.2165/00128071-200001060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128071-200001060-00002

Keywords

Navigation