Skip to main content
Log in

Estimating long-range dependence in time series: An evaluation of estimators implemented in R

  • Articles
  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

Recent studies have shown that many physiological and behavioral processes can be characterized by long-range correlations. The Hurst exponent H of fractal analysis and the fractional-differencing parameter d of the ARFIMA methodology are useful for capturing serial correlations. In this study, we report on different estimators of H and d implemented in R, a popular and freely available software package. By means of Monte Carlo simulations, we analyzed the performance of (1) the Geweke—Porter-Hudak estimator, (2) the approximate maximum likelihood algorithm, (3) the smoothed periodogram approach, (4) the Whittle estimator, (5) rescaled range analysis, (6) a modified periodogram, (7) Higuchi’s method, and (8) detrended fluctuation analysis. The findings—confined to ARFIMA (0, d, 0) models and fractional Gaussian noise—identify the best estimators for persistent and antipersistent series. Two examples combining these results with the step-by-step procedure proposed by Delignières et al. (2006) demonstrate how this evaluation can be used as a guideline in a typical research situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aks, D. J., & Sprott, J. C. (2003). The role of depth and 1/f dynamics in perceiving reversible figures. Nonlinear Dynamics, Psychology, & Life Sciences, 7, 161–180.

    Article  Google Scholar 

  • Bak, P. (1996). How nature works: The science of self-organized criticality. New York: Copernicus.

    Book  Google Scholar 

  • Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59, 381–384.

    Article  PubMed  Google Scholar 

  • Bassingthwaighte, J. B., Liebovitch, L. S., & West, B. J. (1994). Fractal physiology. New York: Oxford University Press.

    Book  Google Scholar 

  • Beran, J. (1994). Statistics for long-memory processes. New York: Chapman & Hall.

    Google Scholar 

  • Beran, J., & Feng, Y. (2002). SEMIFAR models—A semiparametric approach to modelling trends, long-range dependence and nonstationarity. Computational Statistics & Data Analysis, 40, 393–419.

    Article  Google Scholar 

  • Beran, J., & Ocker, D. (1999). SEMIFAR forecasts, with applications to foreign exchange rates. Journal of Statistical Planning & Inference, 80, 137–153.

    Article  Google Scholar 

  • Bloomfield, P. (2000). Fourier analysis of time series: An introduction (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  • Brent, R. P. (1973). Algorithms for minimization without derivatives. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Caccia, D. C., Percival, D., Cannon, M. J., Raymond, G., & Bassingthwaighte, J. B. (1997). Analyzing exact fractal time series: Evaluating dispersional analysis and rescaled range methods. Physica A, 246, 609–632.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon, M. J., Percival, D. B., Caccia, D. C., Raymond, G. M., & Bassingthwaighte, J. B. (1997). Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series. Physica A, 241, 606–626.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Ding, M., & Kelso, J. A. S. (1997). Long memory processes (1/fα type) in human coordination. Physical Review Letters, 79, 4501–4504.

    Article  Google Scholar 

  • Chen, Y., Ding, M., & Kelso, J. A. S. (2001). Origins of time errors in human sensorimotor coordination. Journal of Motor Behavior, 33, 3–8.

    Article  PubMed  Google Scholar 

  • Craigmile, P. F. (2003). Simulating a class of stationary Gaussian processes using the Davies—Harte algorithm, with application to long memory processes. Journal of Time Series Analysis, 24, 505–511.

    Article  Google Scholar 

  • Davies, R. B., & Harte, D. S. (1987). Tests for Hurst effect. Biometrika, 74, 95–101.

    Article  Google Scholar 

  • Delignières, D., Fortes, M., & Ninot, G. (2004). The fractal dynamics of self-esteem and physical self. Nonlinear Dynamics, Psychology, & Life Sciences, 8, 479–510.

    Google Scholar 

  • Delignières, D., Lemoine, L., & Torre, K. (2004). Time intervals production in tapping and oscillatory motion. Human Movement Science, 23, 87–103.

    Article  PubMed  Google Scholar 

  • Delignières, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., & Ninot, G. (2006). Fractal analyses for “short” time series: A reassessment of classical methods. Journal of Mathematical Psychology, 50, 525–544.

    Article  Google Scholar 

  • Delignières, D., Torre, K., & Lemoine, L. (2005). Methodological issues in the application of monofractal analyses in psychological and behavioral research. Nonlinear Dynamics, Psychology, & Life Sciences, 9, 435–461.

    Google Scholar 

  • Ding, M., Chen, Y., & Kelso, J. A. S. (2002). Statistical analysis of timing errors. Brain & Cognition, 48, 98–106.

    Article  Google Scholar 

  • Eke, A., Hermán, P., Bassingthwaighte, J. B., Raymond, G. M., Percival, D. B., Cannon, M., et al. (2000). Physiological time series: Distinguishing fractal noises from motions. Pflügers Archiv, 439, 403–415.

    Article  PubMed  Google Scholar 

  • Eke, A., Hermán, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological Measurement, 23, R1-R38.

    Article  PubMed  Google Scholar 

  • Farrell, S., Wagenmakers, E.-J., & Ratcliff, R. (2006). 1/f noise in human cognition: Is it ubiquitous, and what does it mean? Psychonomic Bulletin & Review, 13, 737–41.

    Article  Google Scholar 

  • Fox, R., & Taqqu, M. S. (1986). Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Annals of Statistics, 14, 517–532.

    Article  Google Scholar 

  • Geweke, J., & Porter-Hudak, S. (1983). The estimation and application of long memory time series models. Journal of Time Series Analysis, 4, 221–238.

    Article  Google Scholar 

  • Gilden, D. L. (1997). Fluctuations in the time required for elementary decisions. Psychological Science, 8, 296–301.

    Article  Google Scholar 

  • Gilden, D. L. (2001). Cognitive emissions of 1/f noise. Psychological Review, 108, 33–56.

    Article  PubMed  Google Scholar 

  • Gilden, D. L., & Hancock, H. (2007). Response variability in attention-deficit disorders. Psychological Science, 18, 796–802.

    Article  PubMed  Google Scholar 

  • Gilden, D. L., Thornton, T., & Mallon, M. W. (1995). 1/f noise in human cognition. Science, 267, 1837–1839

    Article  PubMed  Google Scholar 

  • Gilden, D. L., & Wilson, S. G. (1995a). On the nature of streaks in signal detection. Cognitive Psychology, 28, 17–64.

    Article  PubMed  Google Scholar 

  • Gilden, D. L., & Wilson, S. G. (1995b). Streaks in skilled performance. Psychonomic Bulletin & Review, 2, 260–265.

    Article  Google Scholar 

  • Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1, 15–29.

    Article  Google Scholar 

  • Haslett, J., & Raftery, A. E. (1989). Space-time modelling with longmemory dependence: Assessing Ireland’s wind power resource. Applied Statistics, 38, 1–50.

    Article  Google Scholar 

  • Hausdorff, J. M., Mitchell, S. L., Firtion, R., Peng, C. K., Cudkowicz, M. E., Wei, J. Y., & Goldberger, A. L. (1997). Altered fractal dynamics of gait: Reduced stride-interval correlations with aging and Huntington’s disease. Journal of Applied Physiology, 82, 262–269.

    Article  PubMed  Google Scholar 

  • Hausdorff, J. M., & Peng, C. (1996). Multiscaled randomness: A possible source of 1/f noise in biology. Physical Review E, 54, 2154–2157.

    Article  Google Scholar 

  • Hausdorff, J. M., Zemany, L., Peng, C., & Goldberger, A. L. (1999). Maturation of gait dynamics: Stride-to-stride variability and its temporal organization in children. Journal of Applied Physiology, 86, 1040–1047.

    Article  PubMed  Google Scholar 

  • Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D, 31, 277–283.

    Article  Google Scholar 

  • Holden, J. G. (2005). Gauging the fractal dimension of response times from cognitive tasks. In M. A. Riley & G. C. Van Orden (Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences (pp. 268-318). [Online] Retrieved October 7, 2008, from www.nsf .gov/sbe/bcs/pac/nmbs/nmbs.jsp.

  • Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68, 165–176.

    Article  Google Scholar 

  • Hosking, J. R. M. (1984). Modeling persistence in hydrological time series using fractional differencing. Water Resources Research, 20, 1898–1908.

    Article  Google Scholar 

  • Hurst, H. E., Black, R. P., & Simaika, Y. M. (1965). Long-term storage, an experimental study. London: Constable.

    Google Scholar 

  • Linkenkaer-Hansen, K. (2002). Self-organized criticality and stochastic resonance in the human brain. Unpublished doctoral dissertation, Helsinki University of Technology, Helsinki, Finland.

  • Maddala, G. S., & Kim, I.-M. (1998). Unit roots, cointegration, and structural change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Madison, G. (2004). Fractal modeling of human isochronous serial interval production. Biological Cybernetics, 90, 105–112.

    Article  PubMed  Google Scholar 

  • Mandelbrot, B. B. (1975). Limit theorems on the self-normalized range for weakly and strongly dependent processes. Zeitschrift für Wahrscheinlichkeitstheorie & verwandte Gebiete, 31, 271–285.

    Article  Google Scholar 

  • Mandelbrot, B. B., & van Ness, J. W. (1968). Fractional Brownian motion, fractional noises and applications. SIAM Review, 10, 422–437.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1969). Computer experiments with fractional Gaussian noises. Water Resources Research, 5, 228–267.

    Article  Google Scholar 

  • Marks-Tarlow, T. (1999). The self as a dynamical system. Nonlinear Dynamics, Psychology, & Life Sciences, 3, 311–345.

    Article  Google Scholar 

  • Peng, C.-K., Mietus, J., Hausdorff, J. M., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1993). Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Physical Review Letters, 70, 1343–1346.

    Article  Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C: The art of scientific computing (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pressing, J. (1999). Sources for 1/f noise effects in human cognition and performance. In R. Heath, B. Hayes, A. Heathcote, & C. Hooker (Eds.), Proceedings of the Fourth Conference of the Australian Cognitive Science Society. Newcastle, NSW: University of Newcastle, Department of Psychology.

    Google Scholar 

  • Rangarajan, G., & Ding, M. (2000). First passage time distribution for anomalous diffusion. Physics Letters A, 273, 322–330.

    Article  Google Scholar 

  • R Development Core Team (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at www.R-project.org.

  • Reisen, V. A. (1994). Estimation of the fractional difference parameter in the ARIMA(p, d, q) model using the smoothed periodogram. Journal of Time Series Analysis, 15, 335–350.

    Article  Google Scholar 

  • Reisen, V. A., Abraham, B., & Toscano, E. M. (2000). Parametric and semiparametric estimations of stationary univariate ARFIMA models. Brazilian Journal of Probability & Statistics, 14, 185–206.

    Google Scholar 

  • Riley, M. A., & Van Orden, G. C. (Eds.) (2005). Tutorials in contemporary nonlinear methods for the behavioral sciences [Online]. Retrieved October 7, 2008, from www.nsf.gov/sbe/bcs/pac/nmbs/nmbs.jsp.

  • Shumway, R. H., & Stoffer, D. S. (2006). Time series analysis and its applications: With R examples. New York: Springer.

    Google Scholar 

  • Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of Econometrics, 53, 165–188.

    Article  Google Scholar 

  • Stadnytska, T., & Werner, J. (2006). Sample size and accuracy of estimation of the fractional differencing parameter. Methodology, 4, 135–144.

    Article  Google Scholar 

  • Stroe-Kunold, E., & Werner, J. (2008). Modeling human dynamics by means of cointegration methodology. Methodology, 4, 113–131.

    Article  Google Scholar 

  • Taqqu, M. S., & Teverovsky, V. (1998). On estimating the intensity of long-range dependence in finite and infinite variance time series. In R. J. Adler, R. E. Feldman, & M. S. Taqqu (Eds.), A practical guide to heavy tails: Statistical techniques and applications (pp. 177–217). Boston: Birkhäuser.

    Google Scholar 

  • Taqqu, M. S., Teverovsky, V., & Willinger, W. (1995). Estimators for long-range dependence: An empirical study. Fractals, 3, 785–798.

    Article  Google Scholar 

  • Thornton, T. L., & Gilden, D. L. (2005). Provenance of correlations in psychological data. Psychonomic Bulletin & Review, 12, 409–441.

    Article  Google Scholar 

  • Torre, K., Delignières, D., & Lemoine, L. (2007a). Detection of long-range dependence and estimation of fractal exponents through ARFIMA modelling. British Journal of Mathematical & Statistical Psychology, 60, 85–106.

    Article  Google Scholar 

  • Torre, K., Delignières, D., & Lemoine, L. (2007b). 1/fβ fluctuations in bimanual coordination: An additional challenge for modeling. Experimental Brain Research, 183, 225–234.

    Article  PubMed  Google Scholar 

  • Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization of cognitive performance. Journal of Experimental Psychology: General, 132, 331–350.

    Article  PubMed  Google Scholar 

  • Van Orden, G. C., Kello, C. T., & Holden, J. G. (in press). Situated behavior and the place of measurement in psychological theory. Ecological Psychology.

  • Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2004). Estimation and interpretation of 1/fα noise in human cognition. Psychonomic Bulletin & Review, 11, 579–615.

    Article  Google Scholar 

  • Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2005). Human cognition and a pile of sand: A discussion on serial correlations and selforganized criticality. Journal of Experimental Psychology: General, 134, 108–116.

    Article  PubMed  Google Scholar 

  • Ward, L. M., & Richard, C. M. (2001). 1/fα noise and decision complexity. Unpublished manuscript, University of British Columbia, Vancouver, British Columbia, Canada.

  • West, B. J., & Shlesinger, M. F. (1990). The noise in natural phenomena. American Scientist, 78, 40–45.

    Google Scholar 

  • Zbilut, J. P., & Marwan, N. (2008). The Wiener—Khinchin theorem and recurrence quantification. Physics Letters A, 372, 6622–6626.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Werner.

Additional information

The research for this article was supported by a scholarship awarded the first author by the German National Academic Foundation. Part of this work was done while the first author was a visiting scholar with Eric-Jan Wagenmakers at the University of Amsterdam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroe-Kunold, E., Stadnytska, T., Werner, J. et al. Estimating long-range dependence in time series: An evaluation of estimators implemented in R. Behavior Research Methods 41, 909–923 (2009). https://doi.org/10.3758/BRM.41.3.909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BRM.41.3.909

Keywords

Navigation