Skip to main content
Log in

When the test of mediation is more powerful than the test of the total effect

  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. To address this deficit, in a first study we compared the analytical power values of the mediated effect and the total effect in a single-mediator model, to identify the situations in which the inclusion of one mediator increased statistical power. The results from this first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were nonzero and equal across models. Next, we identified conditions under which power was greater for the test of the total mediated effect than for the test of the total effect in the parallel two-mediator model. These results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results that had been found in the first study. Finally, we assessed the analytical power for a sequential (three-path) two-mediator model and compared the power to detect the three-path mediated effect to the power to detect both the test of the total effect and the test of the mediated effect for the single-mediator model. The results indicated that the three-path mediated effect had more power than the mediated effect from the single-mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert, J. M., & Nelson, S. (2011). Generalized causal mediation analysis. Biometrics, 67, 1028–1038.

    Article  PubMed Central  PubMed  Google Scholar 

  • Aroian, L. A. (1944). The probability function of the product of two normally distributed variables. Annals of Mathematical Statistics, 18, 265–271.

    Article  Google Scholar 

  • Avin, C., Shpitser, I., & Pearl, J. (2005). Identifiability of path-specific effects. In Proceedings of the international joint conference on artificial intelligence. San Francisco, CA: Morgan Kaufman.

    Google Scholar 

  • Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173–1182.

    Article  PubMed  Google Scholar 

  • Cochran, W. G. (1957). Analysis of covariance: Its nature and uses. Biometrics, 13, 261–281.

    Article  Google Scholar 

  • Cochran, W. G. (1965). The planning of observational studies of human populations (with discussion). Journal of the Royal Statistical Society, Series A, 128, 234–265.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis issues for field settings. Chicago, IL: Rand McNally.

    Google Scholar 

  • Cox, D. R. (1960). Regression analysis when there is prior information about supplementary variables. Journal of the Royal Statistical Society: Series B, 22, 172–176.

    Google Scholar 

  • Cox, D. R. (1992). Causality: Some statistical aspects. Journal of the Royal Statistical Society, 155, 291–301.

    Article  Google Scholar 

  • Craig, C. C. (1936). On the frequency function of xy. Annals of Mathematical Statistics, 7, 1–15.

    Article  Google Scholar 

  • Fairchild, A. J., MacKinnon, D. P., Taborga, M. P., & Taylor, A. B. (2009). R 2 effect-size measures for mediation analysis. Behavior Research Methods, 41, 486–498.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fishbein, M., & Ajzen, I. (1975). Belief attitude, intention and behavior. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Freedman, L. S., & Schatzkin, A. (1992). Sample size for studying intermediate endpoints within intervention trials or observational studies. American Journal of Epidemiology, 136, 1148–1159.

    PubMed  Google Scholar 

  • Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18, 233–239. doi:10.1111/j.1467-9280.2007.01882.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Fritz, M. S., Cox, M. G., & MacKinnon, D. P. (2014). Increasing statistical power in mediation models without increasing sample size. Evaluation & the Health Professions. doi:10.1177/0163278713514250

  • Hill, A. B. (1965). The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine, 58, 295–300.

    PubMed Central  PubMed  Google Scholar 

  • Hoyle, R. H., & Kenny, D. A. (1999). Sample size, reliability, and tests of statistical mediation. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 195–222). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Huck, S. W. (1972). The analysis of covariance: Increased power through reduced variability. Journal of Experimental Education, 41, 42–46.

    Article  Google Scholar 

  • Imai, K., Keele, L., & Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods, 15, 309–334.

    Article  PubMed  Google Scholar 

  • Imai, K., & Yamamoto, T. (2013). Identification and sensitivity analysis for multiple causal mechanisms: Revisiting evidence from framing experiments. Political Analysis, 21, 1–31.

    Article  Google Scholar 

  • Judd, C. M., & Kenny, D. A. (1981). Process analysis: Estimating mediation in treatment evaluations. Evaluation Review, 5, 602–619.

    Article  Google Scholar 

  • Kenny, D. A., & Judd, C. M. (2014). Power anomalies in testing mediation. Psychological Science, 25, 334–339. doi:10.1177/0956797613502676

    Article  PubMed  Google Scholar 

  • Kraemer, H. C., & Thiemann, S. (1989). A strategy to use soft data effectively in randomized controlled clinical trials. Journal of Consulting and Clinical Psychology, 57, 148–154.

    Article  PubMed  Google Scholar 

  • Lange, T., Rasmussen, M., & Thygesen, L. C. (2014). Assessing natural direct and indirect effects through multiple pathways. American Journal of Epidemiology, 179, 513–518. doi:10.1093/aje/kwt270

    Article  PubMed  Google Scholar 

  • MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York, NY: Erlbaum.

    Google Scholar 

  • MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83–104.

    Article  PubMed Central  PubMed  Google Scholar 

  • MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99–128.

    Article  PubMed Central  PubMed  Google Scholar 

  • Maxwell, S. E. (1998). Longitudinal designs in randomized group comparisons: When will intermediate observations increase statistical power? Psychological Methods, 3, 275–290.

    Article  Google Scholar 

  • McDonald, R. P. (1997). Haldane’s lungs: A case study in path analysis. Multivariate Behavioral Research, 32, 1–38.

    Article  Google Scholar 

  • Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology, 110, 40–48.

    Article  PubMed  Google Scholar 

  • Neyman, J., & Pearson, E. S. (1933). The testing of statistical hypotheses in relation to probabilities a priori. Proceedings of the Cambridge Philosophical Society, 24, 492–510.

    Article  Google Scholar 

  • Prentice, R. L. (1989). Surrogate endpoints in clinical trials: Definition and operational criteria. Statistics in Medicine, 8, 431–440.

    Article  PubMed  Google Scholar 

  • Robins, J. M. (2003). Semantics of causal DAG models and the identification of direct and indirect effects. In P. J. Green, N. L. Hjort, & S. Richardson (Eds.), Highly structured stochastic systems (pp. 70–81). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Rosenbaum, P. R. (2010). Design of observational studies. New York, NY: Springer.

    Book  Google Scholar 

  • Salthouse, T. A. (1984). Effects of age and skill on typing. Journal of Experimental Psychology: General, 113, 345–371.

    Article  Google Scholar 

  • Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422–445.

    Article  PubMed  Google Scholar 

  • Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290–312.

    Article  Google Scholar 

  • Taylor, A. B., MacKinnon, D. P., & Tein, J.-Y. (2008). Tests of the three-path mediated effect. Organizational Research Methods, 11, 241–269.

    Article  Google Scholar 

  • Tekleab, A. G., Bartol, K. M., & Liu, W. (2005). Is it pay levels or pay raises that matter to fairness and turnover? Journal of Organizational Behavior, 26, 899–921.

    Article  Google Scholar 

  • Thoemmes, F., MacKinnon, D. P., & Reiser, M. R. (2010). Power analysis for complex mediational designs using Monte Carlo methods. Structural Equation Modeling, 17, 510–534.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tofighi, D., MacKinnon, D. P., & Yoon, M. (2009). Covariances between regression coefficient estimates in a single mediator model. British Journal of Mathematical and Statistical Psychology, 62, 457–484.

    Article  PubMed Central  PubMed  Google Scholar 

  • VanderWeele, T. J., & Vansteelandt, S. (2009). Conceptual issues concerning mediation, interventions and composition. Statistics and Its Interface, 2, 457–468.

    Article  Google Scholar 

  • Venter, A., Maxwell, S. E., & Bolig, E. (2002). Power in randomized group comparisons: The value of adding a single intermediate time point to a traditional pretest-posttest design. Psychological Methods, 7, 194–209.

    Article  PubMed  Google Scholar 

  • Wang, C., & Xue, X. (2012). Power and sample size calculations for evaluating mediation effects in longitudinal studies. Statistical Methods in Medical Research. doi:10.1177/0962280212465163. Advance online publication.

    Google Scholar 

  • Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–585.

    Google Scholar 

  • Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics, 5, 161–215.

    Article  Google Scholar 

  • Yerushalmy, J., & Palmer, C. E. (1959). On the methodology of investigations of etiologic factors in chronic diseases. Journal of Chronic Diseases, 10, 27–40.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported in part by Public Health Service Grant No. DA09757. We thank our colleagues for asking about methods to increase power when sample size is small and fixed, as it is in many research areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly P. O’Rourke.

Appendixes

Appendixes

Appendix 1

For the single-mediator model described in Eqs. 2 and 3, and assuming uncorrelated errors across equations, normally distributed variables, and a linear system of relations (McDonald, 1997), the true covariances among X, M, and Y for the single-mediator model can be used to obtain expected values of the regression coefficients and standard errors of those coefficients, to compute predicted power for the test of a, b, and c at any combination of effect size and sample size (MacKinnon, 2008). The expected \( {\widehat{a}}_T \) coefficient is given in Eq. A.1. The subscript T is used to indicate that this value is the true or theoretical value, given the covariance matrix and sample size.

$$ {\widehat{a}}_T=\frac{ Cov\left(X,M\right)}{ Var(X)} $$
(A.1)

The true or theoretical (true is again represented by the T in the subscript) variance of the estimator \( \widehat{a} \), \( {\sigma}_{\widehat{a}T}^2 \) (standard error is the square root of the variance), is equal to

$$ {\sigma}_{\widehat{a}T}^2=\frac{\sigma_{e3}^2}{\left(N-2\right) Var\left[\mathrm{X}\right]} $$
(A.2)

In Eq. A.2, σ 2 e3 is the true error variance from Eq. 3, which predicts M from X. An estimator of the true error variance represented in two ways is shown in Eqs. A.3 and A.4.

$$ {\widehat{\sigma}}_{e3T}^2=\frac{{\displaystyle \sum {e}^2}}{N-\mathrm{p}-1} $$
(A.3)
$$ {\widehat{\sigma}}_{e3T}^2={\widehat{\sigma}}_M^2-{a}^2{\widehat{\sigma}}_X^2 $$
(A.4)

In Eq. A.3, p is the number of X variables (which is equal to 1 here, for the one-predictor case), and ∑ e 2 is the sum of the squared differences between the predicted and observed M scores. Equation A.4 involves the variances of X and M and the \( \widehat{a} \) coefficient. Similar formulas are used to determine the expected values of \( \widehat{b} \) and \( \widehat{c}^{\prime } \), as is shown in Eqs. A.5 and A.6.

$$ {\widehat{b}}_T=\frac{ Var\left[\mathrm{X}\right] Cov\left[\mathrm{M},\mathrm{Y}\right]- Cov\left[\mathrm{X},\mathrm{M}\right] Cov\left[\mathrm{X},\mathrm{Y}\right]}{ Var\left[\mathrm{X}\right] Var\left[M\right]- Cov{\left[\mathrm{X},\mathrm{M}\right]}^2} $$
(A.5)
$$ {\widehat{c}}_T^{\prime }=\frac{ Var\left[\mathrm{M}\right] Cov\left[\mathrm{X},\mathrm{Y}\right]- Cov\left[\mathrm{X},\mathrm{M}\right] Cov\left[\mathrm{M},\mathrm{Y}\right]}{ Var\left[\mathrm{X}\right] Var\left[M\right]- Cov{\left[\mathrm{X},\mathrm{M}\right]}^2} $$
(A.6)
$$ {\sigma}_{\widehat{b}T}^2=\frac{\sigma_{e2}^2}{N-3}\frac{\frac{1}{ Var\left[\mathrm{M}\right]}}{1-{\mathrm{r}}_{\mathrm{XM}}^2} $$
(A.7)
$$ {\sigma}_{\widehat{c}\hbox{'}T}^2=\frac{\sigma_{e2}^2}{N-3}\frac{\frac{1}{ Var\left[\mathrm{X}\right]}}{{1\hbox{-} \mathrm{r}}_{\mathrm{XM}}^2} $$
(A.8)
$$ {\widehat{\sigma}}_{e2T}^2={\widehat{\sigma}}_Y^2-{b}^2{\widehat{\sigma}}_M^2-c{\prime}^2{\widehat{\sigma}}_X^2+ bc^{\prime }{\widehat{\sigma}}_{MX}^2 $$
(A.9)

Equations A.7 and A.8 show the true variances of \( {\widehat{b}}_T \) and \( {\widehat{c}}_T^{\prime } \) respectively, where N is the number of participants and \( {\widehat{\sigma}}_{e2T}^2 \) is the expected true error variance from Eq. 2. Equation A.9 shows an estimator of the true error variance for Eq. 2, predicting Y from X and M, and is analogous to the error variance formula in Eq. A.4, but with p = 2 predictors (X and M).

The covariance matrix in Table 5 produces analogous formulas to determine the expected values of \( {\widehat{c}}_T \), \( {\sigma}_{\widehat{c}T}^2 \), and \( {\widehat{\sigma}}_{e1T}^2 \) from Eq. 1, shown in Eqs. A.10, A.11, and A.12, respectively.

$$ {\widehat{c}}_T=\frac{ Cov\left[\mathrm{X},\mathrm{Y}\right]}{ Var\left[\mathrm{X}\right]} $$
(A.10)
$$ {\sigma}_{\widehat{c}T}^2=\frac{\sigma_{e1}^2}{\left(N-2\right) Var\left[\mathrm{X}\right]} $$
(A.11)
$$ {\widehat{\sigma}}_{e1T}^2={\widehat{\sigma}}_Y^2-{c}^2{\widehat{\sigma}}_X^2 $$
(A.12)

Statistical power to detect the mediated effect

Statistical power is determined using these expected values, as is shown in Eqs. A.13, A.14, and A.15, where ϕ t is the probability from the cumulative t distribution. The statistical power of the joint significance test for mediation consists of the power to detect a nonzero a path and the power to detect a nonzero b path. If both paths are statistically significant, the hypothesis of no mediated effect is rejected (MacKinnon et al., 2002).

$$ P\left({\widehat{a}}_T\right)=1-{\phi}_t\left({\widehat{a}}_T/{\sigma}_{\widehat{a}T}-{t}_{1-\alpha /2,N-2}\right) $$
(A.13)
$$ P\left({\widehat{b}}_T\right)=1-{\phi}_t\left({\widehat{b}}_T/{\sigma}_{\widehat{b}T}-{t}_{1-\alpha /2,N-3}\right) $$
(A.14)
$$ P\left({\widehat{c}}_T\right)=1-{\phi}_t\left({\widehat{c}}_T/{\sigma}_{\widehat{c}T}-{t}_{1-\alpha /2,N-2}\right) $$
(A.15)

So, the case in which the power to detect the mediated effect is greater than the power to detect the total effect is given by the following inequality:

$$ P\left({\widehat{a}}_T\right)P\left({\widehat{b}}_T\right)>P\left({\widehat{c}}_T\right) $$
(A.16)

All power values were computed analytically with an SAS program available from the authors. These analytical power values were checked empirically in a statistical simulation study for the sample sizes and parameter values described in this article. Note that when both a and b are zero, for the joint significance test of a and b, the Type I error rate is .0025.

Appendix 2: Effect size formulas for the parallel two-mediator model

$$ \begin{array}{l}{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2}=\frac{\sigma_{{\mathrm{M}}_1{\mathrm{M}}_2}}{\sqrt{\sigma_{{\mathrm{M}}_1}^2}\sqrt{\sigma_{{\mathrm{M}}_2}^2}}\hfill \\ {}{\rho}_{{\mathrm{M}}_1\mathrm{Y}}=\frac{\sigma_{{\mathrm{M}}_1\mathrm{Y}}}{\sqrt{\sigma_{{\mathrm{M}}_1}^2}\sqrt{\sigma_{\mathrm{Y}}^2}}\hfill \\ {}{\rho}_{{\mathrm{M}}_2\mathrm{Y}}=\frac{\sigma_{{\mathrm{M}}_2\mathrm{Y}}}{\sqrt{\sigma_{{\mathrm{M}}_2}^2}\sqrt{\sigma_{\mathrm{Y}}^2}}\hfill \\ {}{\rho}_{\mathrm{X}\mathrm{Y}}=\frac{\sigma_{\mathrm{X}\mathrm{Y}}}{\sqrt{\sigma_{\mathrm{X}}^2}\sqrt{\sigma_{\mathrm{Y}}^2}}\hfill \end{array} $$

For a 1:

$$ {\rho}_{{\mathrm{X}\mathrm{M}}_1}=\frac{\sigma_{{\mathrm{X}\mathrm{M}}_1}}{\sqrt{\sigma_{\mathrm{X}}^2}\sqrt{\sigma_{{\mathrm{M}}_1}^2}} $$

For a 2:

$$ {\rho}_{{\mathrm{X}\mathrm{M}}_2}=\frac{\sigma_{{\mathrm{X}\mathrm{M}}_2}}{\sqrt{\sigma_{\mathrm{X}}^2}\sqrt{\sigma_{{\mathrm{M}}_2}^2}} $$

For b 1:

$$ \begin{array}{l}{\rho}_{{\mathrm{M}}_1\mathrm{Y}.{\mathrm{XM}}_2}=\frac{\rho_{{\mathrm{M}}_1\mathrm{Y}.\mathrm{X}}-{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2.\mathrm{X}}{\rho}_{{\mathrm{M}}_2\mathrm{Y}.\mathrm{X}}}{\sqrt{1-{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2.\mathrm{X}}^2}\sqrt{1-{\rho}_{{\mathrm{M}}_2\mathrm{Y}.\mathrm{X}}^2}},\kern1em \mathrm{where}\hfill \\ {}{\rho}_{{\mathrm{M}}_1\mathrm{Y}.\mathrm{X}}=\frac{\rho_{{\mathrm{M}}_1\mathrm{Y}}-{\rho}_{{\mathrm{XM}}_1}{\rho}_{\mathrm{XY}}}{\sqrt{1-{\rho}_{{\mathrm{XM}}_1}^2}\sqrt{1-{\rho}_{\mathrm{XY}}^2}},\hfill \\ {}{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2.\mathrm{X}}=\frac{\rho_{{\mathrm{M}}_1{\mathrm{M}}_2}-{\rho}_{{\mathrm{XM}}_1}{\rho}_{{\mathrm{XM}}_2}}{\sqrt{1-{\rho}_{{\mathrm{XM}}_1}^2}\sqrt{1-{\rho}_{{\mathrm{XM}}_2}^2}},\hfill \\ {}{\rho}_{{\mathrm{M}}_2\mathrm{Y}.\mathrm{X}}=\frac{\rho_{{\mathrm{M}}_2\mathrm{Y}}-{\rho}_{{\mathrm{XM}}_2}{\rho}_{\mathrm{XY}}}{\sqrt{1-{\rho}_{{\mathrm{XM}}_2}^2}\sqrt{1-{\rho}_{\mathrm{XY}}^2}}\hfill \end{array} $$

For b 2:

$$ \begin{array}{l}{\rho}_{{\mathrm{M}}_2\mathrm{Y}.{\mathrm{XM}}_1}=\frac{\rho_{{\mathrm{M}}_2\mathrm{Y}.\mathrm{X}}-{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2.\mathrm{X}}{\rho}_{{\mathrm{M}}_1\mathrm{Y}.\mathrm{X}}}{\sqrt{1-{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2.\mathrm{X}}^2}\sqrt{1-{\rho}_{{\mathrm{M}}_1\mathrm{Y}.\mathrm{X}}^2}},\kern1em \mathrm{where}\hfill \\ {}{\rho}_{{\mathrm{M}}_2\mathrm{Y}.\mathrm{X}}=\frac{\rho_{{\mathrm{M}}_2\mathrm{Y}}-{\rho}_{{\mathrm{XM}}_2}{\rho}_{\mathrm{XY}}}{\sqrt{1-{\rho}_{{\mathrm{XM}}_2}^2}\sqrt{1-{\rho}_{\mathrm{XY}}^2}},\hfill \\ {}{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2.\mathrm{X}}=\frac{\rho_{{\mathrm{M}}_1{\mathrm{M}}_2}-{\rho}_{{\mathrm{XM}}_1}{\rho}_{{\mathrm{XM}}_2}}{\sqrt{1-{\rho}_{{\mathrm{XM}}_1}^2}\sqrt{1-{\rho}_{{\mathrm{XM}}_2}^2}},\hfill \\ {}{\rho}_{{\mathrm{M}}_1\mathrm{Y}.\mathrm{X}}=\frac{\rho_{{\mathrm{M}}_1\mathrm{Y}}-{\rho}_{{\mathrm{XM}}_1}{\rho}_{\mathrm{XY}}}{\sqrt{1-{\rho}_{{\mathrm{XM}}_1}^2}\sqrt{1-{\rho}_{\mathrm{XY}}^2}}\hfill \end{array} $$

For c′:

$$ \begin{array}{l}{\rho}_{\mathrm{XY}.{\mathrm{M}}_1{\mathrm{M}}_2}=\frac{\rho_{\mathrm{XY}.{\mathrm{M}}_1}-{\rho}_{{\mathrm{XM}}_2.{\mathrm{M}}_1}{\rho}_{{\mathrm{YM}}_2.{\mathrm{M}}_1}}{\sqrt{1-{\rho}_{{\mathrm{XM}}_2.{\mathrm{M}}_1}^2}\sqrt{1-{\rho}_{{\mathrm{YM}}_2.{\mathrm{M}}_1}^2}},\mathrm{where}\hfill \\ {}{\rho}_{\mathrm{XY}.{\mathrm{M}}_1}=\frac{\rho_{\mathrm{XY}}-{\rho}_{{\mathrm{XM}}_1}{\rho}_{{\mathrm{M}}_1\mathrm{Y}}}{\sqrt{1-{\rho}_{{\mathrm{XM}}_1}^2}\sqrt{1-{\rho}_{{\mathrm{M}}_1\mathrm{Y}}^2}},\hfill \\ {}{\rho}_{{\mathrm{XM}}_2.{\mathrm{M}}_1}=\frac{\rho_{{\mathrm{XM}}_2}-{\rho}_{{\mathrm{XM}}_1}{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2}}{\sqrt{1-{\rho}_{{\mathrm{XM}}_1}^2}\sqrt{1-{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2}^2}},\hfill \\ {}{\rho}_{{\mathrm{YM}}_2.{\mathrm{M}}_1}=\frac{\rho_{{\mathrm{M}}_2\mathrm{Y}}-{\rho}_{{\mathrm{M}}_1\mathrm{Y}}{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2}}{\sqrt{1-{\rho}_{{\mathrm{M}}_1\mathrm{Y}}^2}\sqrt{1-{\rho}_{{\mathrm{M}}_1{\mathrm{M}}_2}^2}}\hfill \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Rourke, H.P., MacKinnon, D.P. When the test of mediation is more powerful than the test of the total effect. Behav Res 47, 424–442 (2015). https://doi.org/10.3758/s13428-014-0481-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13428-014-0481-z

Keywords

Navigation