MINI REVIEW ARTICLE
INVERTED TOPOLOGIES IN MEMBRANE PROTEINS: A MINI-REVIEW

https://doi.org/10.5936/csbj.201308004Get rights and content
Under a Creative Commons license
open access

Abstract

Helical membrane proteins such as transporters, receptors, or channels often exhibit structural symmetry. Symmetry is perfect in homo-oligomers consisting of two or more copies of the same protein chain. Intriguingly, in single chain membrane proteins, often internal pseudo-symmetry is observed, in particular in transporters and channels. In several cases single chain proteins with pseudo-symmetry exist, that share the fold with homo-oligomers suggesting evolutionary pathways that involve gene duplication and fusion. It has been hypothesized that such evolutionary pathways allow for the rapid development of large proteins with novel functionality. At the same time symmetry can be leveraged to recognize highly symmetric substrates such as ions. Here we review helical transporter proteins with an inverted two-fold pseudo-symmetry. In this special scenario the symmetry axis lies in the membrane plane. As a result, the putative ancestral monomeric protein would insert in both directions into the membrane and its open-to-the-inside and open-to-the-outside conformations would be structurally identical and iso-energetic, giving a possible evolutionary pathway to create a transporter protein that needs to flip between the two states.

Keywords

Membrane protein
symmetry
inverted topology
gene duplication
gene fusion
pseudo-symmetry

Cited by (0)

Competing Interests: The authors have declared that no competing interests exist.