Pupillary dilation response as an indicator of auditory discrimination in the barn owl

J Comp Physiol A. 2000 May;186(5):425-34. doi: 10.1007/s003590050442.

Abstract

The pupil of an awake, untrained, head-restrained barn owl was found to dilate in response to sounds with a latency of about 25 ms. The magnitude of the dilation scaled with signal-to-noise ratio. The dilation response habituated when a sound was repeated, but recovered when stimulus frequency or location was changed. The magnitude of the recovered response was related to the degree to which habituating and novel stimuli differed and was therefore exploited to measure frequency and spatial discrimination. Frequency discrimination was examined by habituating the response to a reference tone at 3 kHz or 6 kHz and determining the minimum change in frequency required to induce recovery. We observed frequency discrimination of 125 Hz at 3 kHz and 250 Hz at 6 kHz--values comparable to those reported by others using an operant task. Spatial discrimination was assessed by habituating the response to a stimulus from one location and determining the minimum horizontal speaker separation required for recovery. This yielded the first measure of the minimum audible angle in the barn owl: 3 degrees for broadband noise and 4.5 degrees for narrowband noise. The acoustically evoked pupillary dilation is thus a promising indicator of auditory discrimination requiring neither training nor aversive stimuli.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Auditory Perception / physiology*
  • Discrimination, Psychological / physiology*
  • Habituation, Psychophysiologic / physiology
  • Psychoacoustics
  • Pupil / physiology*
  • Space Perception / physiology
  • Strigiformes / physiology*