Ovarian steroids influence the activity of neuroendocrine dopaminergic neurons

Brain Res. 2000 Oct 6;879(1-2):139-47. doi: 10.1016/s0006-8993(00)02763-3.

Abstract

The secretion of prolactin (PRL) from the anterior lobe (AL) of the pituitary gland is tonically inhibited by dopamine (DA) of hypothalamic origin. While ovarian steroids play a role in the regulation of the secretion of PRL, their effect on all three populations of hypothalamic neuroendocrine dopaminergic neurons is not fully understood. In this study we describe the effects of ovarian steroids on regulation of the release of DA from tuberoinfundibular dopaminergic (TIDA), tuberohypophyseal dopaminergic (THDA) and periventricular-hypophyseal dopaminergic (PHDA) neurons. Adult female rats were bilaterally ovariectomized (OVX) and, 10 days following ovariectomy (day 0), injected with corn oil (vehicle), estrogen, or estrogen plus progesterone (day 1). Animals were sacrificed every 2 h from 09.00 to 21.00 h by rapid decapitation. Trunk blood was collected and the concentration of PRL in serum was determined by radioimmunoassay. The median eminence (ME) and the AL, intermediate (IL) and neural (NL) lobes of the pituitary gland were dissected and the concentration of DA and DOPAC in each was measured by HPLC-EC. OVX rats presented small but significant increases in the secretion of PRL at 15.00 and 17.00 h. Replacement of estrogen or estrogen plus progesterone increased the basal concentration of PRL. Moreover, injection of estrogen only, or estrogen plus progesterone increased the concentration of PRL in serum at 15.00 h through 19.00 h, respectively, followed by a decrease to baseline thereafter. The turnover of DA in the ME and NL of OVX rats increased at 13.00 and returned to low levels. Turnover of DA in the IL of OVX rats increased in the morning by 11.00 h and remained elevated before decreasing by 17.00 h. The turnover of DA in the ME, IL and NL of OVX rats increased by 19.00 h. Injection of estrogen advanced the increase of TIDA activity by 2 h in the ME compared to OVX rats. Moreover, administration of estrogen suppressed the activity of THDA and PHDA neurons in the afternoon compared to OVX rats. In estrogen plus progesterone-treated rats, the activity of hypothalamic neuroendocrine dopaminergic neurons terminating in the ME, IL, and NL was inhibited prior to the increase in the secretion of PRL. The concentration of DA in the AL diminished prior to the estrogen-induced increase of PRL. Administration of progesterone, in concert with estrogen, delayed the increase of PRL in serum and the decrease of DA in the AL, compared to estrogen-treated rats, by 4 h. These data suggest a major role for ovarian steroids in controlling increases in the secretion of PRL by not only stimulating PRL release from lactotrophs, but also by inhibiting the activity of all three populations of hypothalamic neuroendocrine DAergic neurons.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3,4-Dihydroxyphenylacetic Acid / metabolism
  • Animals
  • Circadian Rhythm*
  • Dopamine / metabolism*
  • Estrogens / pharmacology*
  • Female
  • Median Eminence / drug effects
  • Median Eminence / physiology*
  • Neurons / physiology*
  • Ovariectomy
  • Pituitary Gland / drug effects
  • Pituitary Gland / physiology*
  • Progesterone / blood*
  • Progesterone / pharmacology*
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Estrogens
  • 3,4-Dihydroxyphenylacetic Acid
  • Progesterone
  • Dopamine