Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity

Virology. 2001 Oct 25;289(2):378-87. doi: 10.1006/viro.2001.1154.

Abstract

The RNA-specific adenosine deaminase (ADAR1) is an interferon-inducible editing enzyme that converts adenosine to inosine. ADAR1 contains three distinct domains: a N-terminal Z-DNA binding domain that includes two Z-DNA binding motifs; a central double-stranded RNA binding domain that includes three dsRNA binding motifs (dsRBM); and a C-terminal catalytic domain responsible for A-to-I enzymatic activity. The E3L protein of vaccinia virus mediates interferon resistance. E3L, similar to ADAR1, also contains Z-DNA binding and dsRNA binding motifs. To assess the possible role of E3L in modulating RNA editing by ADAR1, we examined the effect of E3L on ADAR1 deaminase activity. Wild-type E3L protein was a potent inhibitor of ADAR1 deaminase enzymatic activity. Analysis of mutant E3L proteins indicated that the carboxy-proximal dsRBM of E3L was essential for antagonism of ADAR1. Surprisingly, disruption of the Z-DNA binding domain of E3L by double substitutions of two highly conserved residues also abolished its antagonistic activity, whereas deletion of the entire Z domain had little effect on the inhibition. With natural neurotransmitter pre-mRNA substrates, E3L weakly inhibited the site-selective editing activity by ADAR1 at the R/G site of the glutamate receptor B subunit (GluR-B) pre-mRNA and the A site of serotonin 2C receptor (5-HT2CR) pre-mRNA; editing of the intronic hotspot (+)60 site of GluR-B was not affected by E3L. These results demonstrate that the A-to-I RNA editing activity of the IFN-inducible adenosine deaminase is impaired by the product of the vaccinia virus E3L interferon resistance gene.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine / metabolism
  • Adenosine Deaminase / genetics
  • Adenosine Deaminase / metabolism*
  • Adenosine Deaminase Inhibitors
  • Inosine / metabolism
  • Interferons / pharmacology
  • Mutation
  • RNA Editing / drug effects*
  • RNA-Binding Proteins / genetics
  • RNA-Binding Proteins / metabolism
  • RNA-Binding Proteins / physiology*
  • Vaccinia virus / physiology*
  • Viral Proteins / genetics
  • Viral Proteins / metabolism
  • Viral Proteins / physiology*

Substances

  • Adenosine Deaminase Inhibitors
  • E3L protein, Vaccinia virus
  • RNA-Binding Proteins
  • Viral Proteins
  • Inosine
  • Interferons
  • ADARB1 protein, human
  • Adenosine Deaminase
  • Adenosine