Potassium currents in octopus cells of the mammalian cochlear nucleus

J Neurophysiol. 2001 Nov;86(5):2299-311. doi: 10.1152/jn.2001.86.5.2299.

Abstract

Octopus cells in the posteroventral cochlear nucleus (PVCN) of mammals are biophysically specialized to detect coincident firing in the population of auditory nerve fibers that provide their synaptic input and to convey its occurrence with temporal precision. The precision in the timing of action potentials depends on the low input resistance (approximately 6 MOmega) of octopus cells at the resting potential that makes voltage changes rapid (tau approximately 200 micros). It is the activation of voltage-dependent conductances that endows octopus cells with low input resistances and prevents repetitive firing in response to depolarization. These conductances have been examined under whole cell voltage clamp. The present study reveals the properties of two conductances that mediate currents whose reversal at or near the equilibrium potential for K(+) over a wide range of extracellular K(+) concentrations identifies them as K(+) currents. One rapidly inactivating conductance, g(KL), had a threshold of activation at -70 mV, rose steeply as a function of depolarization with half-maximal activation at -45 +/- 6 mV (mean +/- SD), and was fully activated at 0 mV. The low-threshold K(+) current (I(KL)) was largely blocked by alpha-dendrotoxin (alpha-DTX) and partially blocked by DTX-K and tityustoxin, indicating that this current was mediated through potassium channels of the Kv1 (also known as shaker or KCNA) family. The maximum low-threshold K(+) conductance (g(KL)) was large, 514 +/- 135 nS. Blocking I(KL) with alpha-DTX revealed a second K(+) current with a higher threshold (I(KH)) that was largely blocked by 20 mM tetraethylammonium (TEA). The more slowly inactivating conductance, g(KH), had a threshold for activation at -40 mV, reached half-maximal activation at -16 +/- 5 mV, and was fully activated at +30 mV. The maximum high-threshold conductance, g(KH), was on average 116 +/- 27 nS. The present experiments show that it is not the biophysical and pharmacological properties but the magnitude of the K(+) conductances that make octopus cells unusual. At the resting potential, -62 mV, g(KL) contributes approximately 42 nS to the resting conductance and mediates a resting K(+) current of 1 nA. The resting outward K(+) current is balanced by an inward current through the hyperpolarization-activated conductance, g(h), that has been described previously.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Membrane / physiology
  • Cochlear Nucleus / cytology
  • Cochlear Nucleus / metabolism*
  • Differential Threshold
  • Electric Conductivity
  • Electrophysiology
  • Mice
  • Mice, Inbred ICR
  • Potassium Channel Blockers / pharmacology
  • Potassium Channels / physiology*
  • Shaker Superfamily of Potassium Channels

Substances

  • Potassium Channel Blockers
  • Potassium Channels
  • Shaker Superfamily of Potassium Channels