Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis

Biogerontology. 2001;2(3):165-71. doi: 10.1023/a:1011513223894.

Abstract

Aging of the human skeleton is characterized by decreased bone formation and bone mass and these changes are more pronounced in patients with osteoporosis. As osteoblasts and adipocytes share a common precursor cell in the bone marrow, we hypothesized that decreased bone formation observed during aging and in patients with osteoporosis is the result of enhanced adipognesis versus osteoblastogenesis from precursor cells in the bone marrow. Thus, we examined iliac crest bone biopsies obtained from 53 healthy normal individuals (age 30-100) and 26 patients with osteoporosis (age 52-92). Adipose tissue volume fraction (AV), hematopoietic tissue volume fraction (HV) and trabecular bone volume fraction (BV) were quantitated as a percentage of total tissue volume fraction (TV) (calculated as BV + AV + HV) using the point-counting method. We found an age-related increase in AV/TV (r = 0.53, P < 0.001, n = 53) and an age-related decline in BV/TV (r = -0.46, P < 0.001, n = 53) as well as in the HV/TV (r -0.318, P < 0.05, n = 53). There was an age-related inverse correlation between BV/TV and AV/TV (r = -0.58, P < 0.001). No significant correlation between the AV/TV and the body mass index (r = 0.06, n.s., n = 52) was detectable. Compared with age-matched controls, patients with osteoporosis exhibited an increased AV/TV (P < 0.05) and decreased BV/TV (P < 0.05) but no statistically significant difference in HV/TV. Our data support the hypothesis that with aging and in osteoporosis an enhanced adipogenesis is observed in the bone marrow and that these changes are inversely correlated to decreased trabecular bone volume. The cellular and molecular mechanisms mediating these changes remain to be determined.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipocytes / pathology*
  • Adult
  • Age Factors
  • Aged
  • Aged, 80 and over
  • Aging / pathology*
  • Body Mass Index
  • Bone Marrow
  • Female
  • Humans
  • Male
  • Middle Aged
  • Osteoporosis / pathology*