VPAC1 is a cellular neuroendocrine receptor expressed on T cells that actively facilitates productive HIV-1 infection

AIDS. 2002 Feb 15;16(3):309-19. doi: 10.1097/00002030-200202150-00001.

Abstract

Objective: A lack of productive HIV-1 infection of Kit225 compared to Jurkat T cells, despite similar levels of CD4 and HIV-1 chemokine co-receptors, was found to correlate with the expression of vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide receptor-1 (VPAC1). We therefore examined a role for this seven-transmembrane G protein-coupled neuroendocrine receptor in modulating HIV-1 infection.

Methods: Reverse transcription-PCR was used to show the level of VPAC1 expression in different T-cell lines. A signal-blocking antibody to VPAC1 was used to examine its inhibiting effect on HIV-1 infection. Transfection of VPAC1 cDNA in both sense and anti-sense orientation was used to assess the role of VPAC1 in HIV-1 infection. HIV-1 infection was monitored by gag p24 ELISA using HIV-1IIIB or by luciferase activity using pseudo envelope-typed HXB2-NL4-3-luciferase. Analysis of HIV-1 gag DNA and 2-LTR circles was utilized to examine a possible mechanism for the effect of VPAC1.

Results: Using VPAC1 signal blocking antibody, we showed that up to 80% of productive infection with HIV-1IIIB was inhibited. We also demonstrated that HIV-1 gp120 has sequence similarity to the natural ligand for VPAC1 and postulate that it can activate this receptor directly. Transfection of VPAC1 cDNA in the anti-sense orientation resulted in a significant loss, up to 50% of productive infection. In contrast, transfection of cells with VPAC1 in the sense orientation increased the productive infection by more than 15-fold and caused a profound increase in syncytium formation. Furthermore, stimulation of VPAC1 on primary cells facilitated in vitro infection with HIV-1 HXB2-NL4-3. Analysis of HIV-1 gag DNA indicated that VPAC1 does not affect viral entry; however, cells that show negligible expression of VPAC1 may not be productively infected as indicated by a lack of 2-LTR circle formation.

Conclusion: We have discovered a cellular receptor, VPAC1, that is a novel and potent facilitator of HIV-1 infection and thus, is a potentially important new target for therapeutic intervention.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Cell Line
  • DNA, Antisense / genetics
  • DNA, Antisense / pharmacology
  • DNA, Complementary / genetics
  • Gene Expression
  • HIV Envelope Protein gp120 / immunology
  • HIV Infections / etiology*
  • HIV Infections / prevention & control
  • HIV Long Terminal Repeat
  • HIV-1 / pathogenicity*
  • Humans
  • Jurkat Cells
  • Receptors, Vasoactive Intestinal Peptide / antagonists & inhibitors
  • Receptors, Vasoactive Intestinal Peptide / genetics
  • Receptors, Vasoactive Intestinal Peptide / physiology*
  • Receptors, Vasoactive Intestinal Polypeptide, Type I
  • Reverse Transcriptase Polymerase Chain Reaction
  • Signal Transduction
  • T-Lymphocytes / physiology*
  • T-Lymphocytes / virology*

Substances

  • DNA, Antisense
  • DNA, Complementary
  • HIV Envelope Protein gp120
  • Receptors, Vasoactive Intestinal Peptide
  • Receptors, Vasoactive Intestinal Polypeptide, Type I