The amplicon-plus system for high-level expression of transgenes in plants

Nat Biotechnol. 2002 Jun;20(6):622-5. doi: 10.1038/nbt0602-622.

Abstract

Many biotechnological applications require high-level expression of transgenes in plants. One strategy to achieve this goal was the production of potato virus X (PVX) "amplicon" lines: transgenic lines that encode a replicating RNA virus vector carrying a gene of interest. The idea was that transcription of the amplicon transgene would initiate viral RNA replication and gene expression, resulting in very high levels of the gene product of interest. This approach failed, however, because every amplicon transgene, in both tobacco and Arabidopsis thaliana, was subject to post-transcriptional gene silencing (PTGS). In PTGS, the transgene is transcribed but the transcripts fail to accumulate as a result of sequence-specific targeting and destruction. Even though the amplicon locus is silenced, the level of beta-glucuronidase (GUS) activity in a PVX/GUS line is similar to that in some transgenic lines expressing GUS from a conventional (not silenced) GUS locus. This result suggested that the very high levels of expression originally envisioned for amplicons could be achieved if PTGS could be overcome and if the resulting plants did not suffer from severe viral disease. Here we report that high-level transgene expression can be achieved by pairing the amplicon approach with the use of a viral suppressor of PTGS, tobacco etch virus (TEV) helper component proteinase (HC-Pro). Leaves of mature tobacco plants co-expressing HC-Pro and a PVX/GUS amplicon accumulate GUS to approximately 3% of total protein. Moreover, high-level expression occurs without viral symptoms and, when HC-Pro is expressed from a mutant transgene, without detrimental developmental phenotypes.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cysteine Endopeptidases / genetics*
  • Cysteine Endopeptidases / immunology
  • Gene Expression
  • Gene Expression Regulation, Plant*
  • Genetic Engineering / methods
  • Glucuronidase / genetics
  • Nicotiana / genetics*
  • Nicotiana / immunology
  • Plant Leaves / genetics*
  • Plant Leaves / immunology
  • Plants, Genetically Modified / genetics*
  • Plants, Genetically Modified / immunology
  • RNA Interference / immunology*
  • Transgenes / genetics*
  • Transgenes / immunology
  • Viral Proteins / genetics*
  • Viral Proteins / immunology

Substances

  • Viral Proteins
  • Glucuronidase
  • Cysteine Endopeptidases
  • HC-Pro protein, potyvirus