Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1

DNA Res. 2002 Aug 31;9(4):123-30. doi: 10.1093/dnares/9.4.123.

Abstract

The entire genome of a thermophilic unicellular cyanobacterium, Thermosynechococcus elongatus BP-1, was sequenced. The genome consisted of a circular chromosome 2,593,857 bp long, and no plasmid was detected. A total of 2475 potential protein-encoding genes, one set of rRNA genes, 42 tRNA genes representing 42 tRNA species and 4 genes for small structural RNAs were assigned to the chromosome by similarity search and computer prediction. The translated products of 56% of the potential protein-encoding genes showed sequence similarity to experimentally identified and predicted proteins of known function, and the products of 34% of these genes showed sequence similarity to the translated products of hypothetical genes. The remaining 10% lacked significant similarity to genes for predicted proteins in the public DNA databases. Sixty-three percent of the T. elongatus genes showed significant sequence similarity to those of both Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120, while 22% of the genes were unique to this species, indicating a high degree of divergence of the gene information among cyanobacterial strains. The lack of genes for typical fatty acid desaturases and the presence of more genes for heat-shock proteins in comparison with other mesophilic cyanobacteria may be genomic features of thermophilic strains. A remarkable feature of the genome is the presence of 28 copies of group II introns, 8 of which contained a presumptive gene for maturase/reverse transcriptase. A trace of genome rearrangement mediated by the group II introns was also observed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cyanobacteria / genetics*
  • Cyanobacteria / metabolism
  • Genome, Bacterial*
  • Molecular Sequence Data
  • Photosynthesis / genetics
  • Sequence Analysis, DNA

Associated data

  • GENBANK/BA000039