Recombining overlapping BACs into a single larger BAC

BMC Biotechnol. 2004 Jan 6:4:1. doi: 10.1186/1472-6750-4-1.

Abstract

Background: BAC clones containing entire mammalian genes including all the transcribed region and long range controlling elements are very useful for functional analysis. Sequenced BACs are available for most of the human and mouse genomes and in many cases these contain intact genes. However, large genes often span more than one BAC, and single BACs covering the entire region of interest are not available. Here we describe a system for linking two or more overlapping BACs into a single clone by homologous recombination.

Results: The method was used to link a 61-kb insert carrying the final 5 exons of the human CFTR gene onto a 160-kb BAC carrying the first 22 exons. Two rounds of homologous recombination were carried out in the EL350 strain of bacteria which can be induced for the Red genes. In the first round, the inserts of the two overlapping BACs were subcloned into modified BAC vectors using homologous recombination. In the second round, the BAC to be added was linearised with the very rare-cutting enzyme I-PpoI and electroporated into recombination efficient EL350 bacteria carrying the other BAC. Recombined BACs were identified by antibiotic selection and PCR screening and 10% of clones contained the correctly recombined 220-kb BAC.

Conclusion: The system can be used to link the inserts from any overlapping BAC or PAC clones. The original orientation of the inserts is not important and desired regions of the inserts can be selected. The size limit for the fragments recombined may be larger than the 61 kb used here and multiple BACs in a contig could be combined by alternating use of the two pBACLink vectors. This system should be of use to many investigators wishing to carry out functional analysis on large mammalian genes which are not available in single BAC clones.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosomes, Artificial, Bacterial / genetics*
  • Contig Mapping / methods*
  • Cystic Fibrosis Transmembrane Conductance Regulator / genetics
  • Genetic Vectors / genetics
  • Humans

Substances

  • CFTR protein, human
  • Cystic Fibrosis Transmembrane Conductance Regulator