Distinction between wild and cultivated enset (Ensete ventricosum) gene pools in Ethiopia using RAPD markers

Hereditas. 2004;140(2):139-48. doi: 10.1111/j.1601-5223.2004.01792.x.

Abstract

In southwest Ethiopia, the cultivation area of Ensete ventricosum (enset) overlaps with the natural distribution area of this species. Analyses of genetic diversity were undertaken using RAPD to provide information for conservation strategies as well as evidence of possible gene flow between the different gene pools, which can be of interest for future improvement of cultivated enset. The extent of RAPD variation in wild enset was investigated in 5 populations in the Bonga area (Kefficho administrative region) and 9 cultivated clones. Comparisons were also made with some Musa samples of potential relevance for crop improvement. Nine oligonucleotide primers amplified 72 polymorphic loci. Population differentiation was estimated with the Shannon index (G'(ST)=0.10), Nei's G(ST) (0.12) and AMOVA (Phi(ST)=0.12), and appears to be relatively low when compared with outbreeding, perennial species in general. Cluster analysis (UPGMA) and principal component analysis (PCA) similarly indicated low population differentiation, and also demonstrated that cultivated clones essentially clustered distinctly from wild enset samples, suggesting that the present-day cultivated enset clones have been introduced to domestication from a limited number of wild progenitors. In addition, subsequent gene flow between wild and cultivated enset may have been prohibited by differences between modes of propagation and harvesting time; cultivated enset is propagated vegetatively through sucker production and the plant is generally harvested before maturity or flower set, thereby hindering pollination by wild enset or vice versa. A significant correlation was not found between genetic and geographical distances. The relatively high total RAPD diversity suggests that wild enset populations in the Bonga area harbour genetic variability which could potentially act as a source for useful or rare genes in the improvement of cultivated enset. As expected, E. ventricosum was clearly differentiated from the analysed Musa samples, that clustered in accordance with the present morphology- and molecular marker-based taxonomy of the genus.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA, Plant / genetics
  • Ethiopia
  • Gene Pool*
  • Genetic Markers*
  • Genetic Variation*
  • Geography
  • Phylogeny
  • Phytolacca / genetics*

Substances

  • DNA, Plant
  • Genetic Markers