Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton

Nature. 2004 May 13;429(6988):171-4. doi: 10.1038/nature02454.

Abstract

Redfield noted the similarity between the average nitrogen-to-phosphorus ratio in plankton (N:P = 16 by atoms) and in deep oceanic waters (N:P = 15; refs 1, 2). He argued that this was neither a coincidence, nor the result of the plankton adapting to the oceanic stoichiometry, but rather that phytoplankton adjust the N:P stoichiometry of the ocean to meet their requirements through nitrogen fixation, an idea supported by recent modelling studies. But what determines the N:P requirements of phytoplankton? Here we use a stoichiometrically explicit model of phytoplankton physiology and resource competition to derive from first principles the optimal phytoplankton stoichiometry under diverse ecological scenarios. Competitive equilibrium favours greater allocation to P-poor resource-acquisition machinery and therefore a higher N:P ratio; exponential growth favours greater allocation to P-rich assembly machinery and therefore a lower N:P ratio. P-limited environments favour slightly less allocation to assembly than N-limited or light-limited environments. The model predicts that optimal N:P ratios will vary from 8.2 to 45.0, depending on the ecological conditions. Our results show that the canonical Redfield N:P ratio of 16 is not a universal biochemical optimum, but instead represents an average of species-specific N:P ratios.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ecosystem*
  • Models, Biological
  • Nitrogen / analysis*
  • Nitrogen Fixation*
  • Oceans and Seas
  • Phosphorus / analysis*
  • Phytoplankton / chemistry*
  • Phytoplankton / metabolism
  • Seawater / chemistry*
  • Seawater / microbiology
  • Species Specificity

Substances

  • Phosphorus
  • Nitrogen