Mandarin tone recognition in cochlear-implant subjects

Hear Res. 2004 Nov;197(1-2):87-95. doi: 10.1016/j.heares.2004.06.002.

Abstract

This study examined tone recognition in five cochlear-implant subjects who were native speakers of Mandarin and used a Nucleus-22 device. Psychophysical experiments were conduced to measure rate discrimination in individual electrodes from the most apical to the most basal electrodes. The rate range was from 100 to 200 Hz, which corresponded to the range of variation in fundamental frequency for the tonal tokens used in this study. Speech recognition experiments were also conducted to measure tone recognition as function of the number of electrodes from a 1-electrode map to a 20-electrode map. Large individual variability was observed for both rate discrimination and tone recognition result: Average rate discrimination ranged between 0.2 and 1.2 (Weber's fraction) whereas tone recognition ranged between 30% and 70% correct. A highly significant correlation was found between rate discrimination and tone recognition with the 20-electrode map, but a non-significant correlation was observed with the 1-electrode map due to a floor effect in tone recognition. The present result supports the hypothesis that both spectral and temporal cues contribute to tone recognition. In addition, the present result shows that current cochlear-implant subjects produced significantly lower performance than acoustic simulations in normal-hearing subjects, suggesting that neither temporal nor spectral cues have been adequately and appropriately extracted and encoded in current cochlear implants. New designs are discussed to improve tone recognition in cochlear implant subjects.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Analysis of Variance
  • Cochlear Implantation / methods*
  • Cochlear Implants*
  • Electrodes
  • Female
  • Hearing Loss, Sensorineural / rehabilitation*
  • Humans
  • Male
  • Middle Aged
  • Prosthesis Design
  • Speech Perception / physiology*
  • Speech Production Measurement