Dynamics of human walking at steady speeds

Phys Rev Lett. 2004 Nov 12;93(20):208101. doi: 10.1103/PhysRevLett.93.208101. Epub 2004 Nov 10.

Abstract

Biped locomotion is discussed through a Lagrangian formulation for velocity-dependent, body driving forces. An analysis of level walking in humans is given through the known experimental data on the ground-reaction force and the external work without recourse to inverted-pendulum modeling. At a certain speed, rectilinear motion of the center of mass with its backward rotation along a shortened hypocycloid is ensured by double-frequency nonlinear oscillations, whose energy cost is 1% of the external work. With increasing speed, a peculiarity and an instability of the trajectory indicate, respectively, a slow-to-normal gait crossover and the maximal fast walking speed. Key words: integrative biology, biped locomotion, human gaits, muscles.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomechanical Phenomena
  • Gait / physiology*
  • Humans
  • Models, Biological*
  • Walking / physiology*