Specific contributions of histone tails and their acetylation to the mechanical stability of nucleosomes

J Mol Biol. 2005 Feb 11;346(1):135-46. doi: 10.1016/j.jmb.2004.11.056. Epub 2004 Dec 22.

Abstract

The distinct contributions of histone tails and their acetylation to nucleosomal stability were examined by mechanical disruption of individual nucleosomes in a single chromatin fiber using an optical trap. Enzymatic removal of H2A/H2B tails primarily decreased the strength of histone-DNA interactions located approximately +/-36bp from the dyad axis of symmetry (off-dyad strong interactions), whereas removal of the H3/H4 tails played a greater role in regulating the total amount of DNA bound. Similarly, nucleosomes composed of histones acetylated to different degrees by the histone acetyltransferase p300 exhibited significant decreases in the off-dyad strong interactions and the total amount of DNA bound. Acetylation of H2A/H2B appears to play a particularly critical role in weakening the off-dyad strong interactions. Collectively, our results suggest that the destabilizing effects of tail acetylation may be due to elimination of specific key interactions in the nucleosome.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acetylation
  • Amino Acid Sequence
  • DNA / metabolism
  • Gene Expression Regulation
  • Histones / chemistry*
  • Histones / metabolism*
  • Humans
  • Microarray Analysis
  • Molecular Sequence Data
  • Nucleosomes / chemistry*
  • Nucleosomes / genetics
  • Nucleosomes / metabolism*
  • Thermodynamics
  • Transcription, Genetic / genetics

Substances

  • Histones
  • Nucleosomes
  • DNA