Function of striatum beyond inhibition and execution of motor responses

Hum Brain Mapp. 2005 Jul;25(3):336-44. doi: 10.1002/hbm.20111.

Abstract

We used functional magnetic resonance imaging (fMRI) to study the role of the striatum in inhibitory motor control. Subjects had to refrain from responding to designated items (STOP trials) within a similar series of motor stimuli. Striatal activation was increased significantly compared to that when responding to all targets within a series of motor stimuli, indicating that the striatum is more active when inhibitory motor control over responses is required. The likelihood of a STOP trial was varied parametrically by varying the number of GO trials before a STOP trial. We could thus measure the effect of expecting a STOP trial on the fMRI response in the striatum. We show for the first time in humans that the striatum becomes more active when the likelihood of inhibiting a planned motor response increases. Our findings suggest that the striatum is critically involved in inhibitory motor control, most likely by controlling the execution of planned motor responses.

MeSH terms

  • Adolescent
  • Adult
  • Brain Mapping
  • Cerebral Cortex / anatomy & histology
  • Cerebral Cortex / physiology
  • Corpus Striatum / anatomy & histology
  • Corpus Striatum / physiology*
  • Female
  • Functional Laterality / physiology
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Movement / physiology*
  • Neural Inhibition / physiology*
  • Neural Pathways / anatomy & histology
  • Neural Pathways / physiology
  • Neuropsychological Tests
  • Photic Stimulation
  • Psychomotor Performance / physiology*
  • Reaction Time / physiology
  • Volition / physiology*