Mapping pathways and phenotypes by systematic gene overexpression

Mol Cell. 2006 Feb 3;21(3):319-30. doi: 10.1016/j.molcel.2005.12.011.

Abstract

Many disease states result from gene overexpression, often in a specific genetic context. To explore gene overexpression phenotypes systematically, we assembled an array of 5280 yeast strains, each containing an inducible copy of an S. cerevisiae gene, covering >80% of the genome. Approximately 15% of the overexpressed genes (769) reduced growth rate. This gene set was enriched for cell cycle-regulated genes, signaling molecules, and transcription factors. Overexpression of most toxic genes resulted in phenotypes different from known deletion mutant phenotypes, suggesting that overexpression phenotypes usually reflect a specific regulatory imbalance rather than disruption of protein complex stoichiometry. Global overexpression effects were also assayed in the context of a cyclin-dependent kinase mutant (pho85Delta). The resultant gene set was enriched for Pho85p targets and identified the yeast calcineurin-responsive transcription factor Crz1p as a substrate. Large-scale application of this approach should provide a strategy for identifying target molecules regulated by specific signaling pathways.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression Profiling
  • Gene Expression Regulation, Fungal*
  • Genes, Fungal*
  • Oligonucleotide Array Sequence Analysis
  • Phenotype*
  • Saccharomyces cerevisiae / cytology
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Signal Transduction / physiology*

Substances

  • Saccharomyces cerevisiae Proteins