Integral projection models for species with complex demography

Am Nat. 2006 Mar;167(3):410-28. doi: 10.1086/499438. Epub 2006 Feb 14.

Abstract

Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation (e.g., body size). The integral projection model (IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross-classification by several attributes (e.g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/elasticity analysis for density-independent models, local stability analysis in density-dependent models, and optimal/evolutionarily stable strategy life-history analysis. Our presentation centers on an IPM for the thistle Onopordum illyricum based on a 6-year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. The online edition of the American Naturalist includes a zip archive of R scripts illustrating our suggested methods.A zip archive of R scripts illustrating our suggested methods is also provided.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biological Evolution
  • Computer Simulation
  • Models, Biological*
  • Onopordum / anatomy & histology
  • Onopordum / classification
  • Onopordum / physiology*
  • Population Growth
  • Reproduction
  • Seedlings / anatomy & histology
  • Seedlings / classification
  • Seedlings / physiology