A role for a flavin-containing mono-oxygenase in resistance against microbial pathogens in Arabidopsis

Plant J. 2006 Aug;47(4):629-39. doi: 10.1111/j.1365-313X.2006.02813.x. Epub 2006 Jul 19.

Abstract

Using activation tagging in the Arabidopsis Col-0 rps2-101C background, we identified a mutant (FMO1-3D) that showed virtually no symptoms after inoculation with virulent Pseudomonas syringae pv. tomato DC3000 bacteria. The dominant, gain-of-function phenotype of the FMO1-3D mutant is due to over-expression of a class 3 flavin-containing mono-oxygenase (FMO). We recapitulated the FMO1-3D mutant phenotype in independent transgenic Col-0 lines over-expressing the FMO1 cDNA under the control of the 35S CaMV promoter. The increased basal resistance observed in the FMO1-3D mutant was also effective against the taxonomically unrelated downy mildew-causing pathogen Hyaloperonospora parasitica. By investigating the progeny from crosses of the FMO1-3D mutant with the NahG transgenic line, we showed that the enhanced basal resistance phenotype was dependent on the accumulation of salicylic acid. FMO1-3D plants showed wild-type resistant reactions after inoculation with avirulent bacteria, indicating that the R-gene-mediated defence physiology was not compromised by FMO1 over-expression. Transcripts of the class 3 FMO1 gene accumulated within 6 h after inoculation of wild-type Col-0 plants with avirulent Pst + avrRpt2 cells. Moreover, a T-DNA insertion into the FMO1 gene resulted in enhanced susceptibility to virulent Pseudomonas and Hyaloperonospora parasitica, suggesting that expression of the FMO1 gene is a hitherto undescribed component of the plant's resistance repertoire. We discuss the possibility that the FMO may participate in the detoxification of virulence factors produced by pathogens.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / enzymology*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Mutation
  • Oxygenases / chemistry
  • Oxygenases / metabolism*
  • Plant Diseases / microbiology*
  • Plant Leaves / metabolism
  • Plant Leaves / microbiology
  • Plants, Genetically Modified

Substances

  • Arabidopsis Proteins
  • Oxygenases
  • dimethylaniline monooxygenase (N-oxide forming)