Divergent nonlinear responses of the boreal forest field layer along an experimental gradient of deer densities

Oecologia. 2006 Nov;150(1):78-88. doi: 10.1007/s00442-006-0504-2. Epub 2006 Aug 5.

Abstract

The early responses of the field layer to changes in biotic and abiotic conditions are key determinants of the future composition and structure of forests where sustained heavy browsing pressure has depauperated the shrub understory. We investigated the relationships between white-tailed deer density and field layer plant community dynamics in boreal forests managed for wildlife and timber production. We hypothesized that the growth and reproduction of field layer plants are either: (H(1)) directly proportional to deer density, or (H(2)) related to deer density through nonlinear relationships or (H(3)) through nonlinear relationships with thresholds. We tested these hypotheses using data from a controlled browsing experiment involving a gradient of deer densities (0, 7.5, 15, 27 and 56 deer km(-2)) in interaction with timber harvesting conducted on Anticosti Island, Canada. In recent clearcuts, the dominant responses of the field layer plants were exponential recovery in growth and reproduction with decreasing deer densities. The abundance of browse-tolerant species such as grasses was positively related to deer density, suggesting an apparent competitive gain. These results support the prediction from our second hypothesis, although the presence of ecological thresholds should not be ruled out. Rapid changes in the early successional stages have potentially long-term consequences on successional patterns through processes such as the modulation of germination and early establishment success of seedlings from later successional species. Quantitative data as those presented here are essential for the development of ecosystem management prescriptions. On Anticosti Island, reduction of local deer densities to levels <15-7.5 deer km(-2) in the first 3 years following timber harvesting appears to be compatible with the regeneration dynamics of this system although lower levels of deer densities may be required for the conservation of browse-sensitive plant species.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analysis of Variance
  • Animals
  • Deer / physiology*
  • Ecosystem*
  • Feeding Behavior / physiology*
  • Forestry
  • Population Density
  • Quebec
  • Reproduction / physiology
  • Trees / physiology*