Post-translational modifications in the context of therapeutic proteins

Nat Biotechnol. 2006 Oct;24(10):1241-52. doi: 10.1038/nbt1252.

Abstract

The majority of protein-based biopharmaceuticals approved or in clinical trials bear some form of post-translational modification (PTM), which can profoundly affect protein properties relevant to their therapeutic application. Whereas glycosylation represents the most common modification, additional PTMs, including carboxylation, hydroxylation, sulfation and amidation, are characteristic of some products. The relationship between structure and function is understood for many PTMs but remains incomplete for others, particularly in the case of complex PTMs, such as glycosylation. A better understanding of such structural-functional relationships will facilitate the development of second-generation products displaying a PTM profile engineered to optimize therapeutic usefulness.

Publication types

  • Review

MeSH terms

  • Glycoproteins / therapeutic use
  • Glycosylation
  • Gonadotropins / metabolism
  • Gonadotropins / therapeutic use
  • Hydroxylation
  • Protein Engineering / methods*
  • Protein Processing, Post-Translational*
  • Proteins / metabolism*
  • Proteins / therapeutic use*
  • Tissue Plasminogen Activator / metabolism
  • Tissue Plasminogen Activator / pharmacology
  • Tyrosine / metabolism

Substances

  • Glycoproteins
  • Gonadotropins
  • Proteins
  • Tyrosine
  • Tissue Plasminogen Activator