The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional

Mol Microbiol. 2006 Dec;62(5):1264-77. doi: 10.1111/j.1365-2958.2006.05421.x. Epub 2006 Oct 24.

Abstract

The role of quorum sensing in Pseudomonas aeruginosa biofilm formation is unclear. Some researchers have shown that quorum sensing is important for biofilm development, while others have indicated it has little or no role. In this study, the contribution of quorum sensing to biofilm development was found to depend upon the nutritional environment. Depending upon the carbon source, quorum-sensing mutant strains (lasIrhlI and lasRrhlR) either exhibited a pronounced defect early in biofilm formation or formed biofilms identical to the wild-type strain. Quorum sensing was then shown to exert its nutritionally conditional control of biofilm development through regulation of swarming motility. Examination of pilA and fliM mutant strains further supported the role of swarming motility in biofilm formation. These data led to a model proposing that the prevailing nutritional conditions dictate the contributions of quorum sensing and swarming motility at a key juncture early in biofilm development.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biofilms / growth & development*
  • Food
  • Pseudomonas aeruginosa / genetics
  • Pseudomonas aeruginosa / physiology*
  • Signal Transduction / physiology*