Force-induced activation of talin and its possible role in focal adhesion mechanotransduction

J Biomech. 2007;40(9):2096-106. doi: 10.1016/j.jbiomech.2007.04.006.

Abstract

It is now well established that cells can sense mechanical force, but the mechanisms by which force is transduced into a biochemical signal remain poorly understood. One example is the recruitment of vinculin to reinforce initial contacts between a cell and the extracellular matrix (ECM) due to tensile force. Talin, an essential linking protein in an initial contact, contains at least one vinculin-binding site (VBS) that is cryptic and inactive in the native state. The N-terminal five-helix bundle of talin rod is a stable structure with a known cryptic VBS1. The perturbation of this stable structure through elevated temperature or destabilizing mutation activates vinculin binding. Although the disruption of this subdomain by transmitted mechanical force is a potential cue for the force-induced focal adhesion strengthening, the molecular basis for this mechanism remains elusive. Here, molecular dynamics (MD) is employed to demonstrate a force-induced conformational change that exposes the cryptic vinculin-binding residues of VBS1 to solvent under applied force along a realistic pulling direction. VBS1 undergoes a rotation of 62.0 +/- 9.5 degrees relative to its native state as its vinculin-binding residues are released from the tight hydrophobic core. Charged and polar residues on the VBS1 surface are the site of force transmission that strongly interact with an adjacent alpha-helix, and in effect, apply torque to the VBS1 to cause its rotation. Activation was observed with mean force of 13.2 +/-8.0 pN during constant velocity simulation and with steady force greater than 18.0 pN.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Substitution / genetics
  • Focal Adhesions / physiology*
  • Mechanotransduction, Cellular / physiology*
  • Models, Biological
  • Models, Molecular
  • Talin / chemistry
  • Talin / genetics
  • Talin / metabolism*

Substances

  • Talin