Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish

Dev Biol. 2007 Oct 15;310(2):363-78. doi: 10.1016/j.ydbio.2007.08.008. Epub 2007 Aug 10.

Abstract

In many vertebrates, extra-embryonic tissues are important signaling centers that induce and pattern the germ layers. In teleosts, the mechanism by which the extra-embryonic yolk syncytial layer (YSL) patterns the embryo is not understood. Although the Nodal-related protein Squint is expressed in the YSL, its role in this tissue is not known. We generated a series of stable transgenic lines with GFP under the control of squint genomic sequences. In all species, nodal-related genes induce their own expression through a positive feedback loop. We show that two tissue specific enhancers in the zebrafish squint gene mediate the response to Nodal signals. Expression in the blastomeres depends upon a conserved Nodal response element (NRE) in the squint first intron, while expression in the extra-embryonic enveloping layer (EVL) is mediated by an element upstream of the transcription start site. Targeted depletion experiments demonstrate that the zebrafish Nodal-related proteins Squint and Cyclops are required in the YSL for endoderm and head mesoderm formation. Thus, Nodal signals mediate interactions between embryonic and extra-embryonic tissues in zebrafish that maintain nodal-related gene expression in the margin. Our results demonstrate a high degree of functional conservation between the extra-embryonic tissues of mouse and zebrafish.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Base Sequence
  • Body Patterning
  • Endoderm / metabolism
  • Gene Expression Regulation, Developmental
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Mesoderm / metabolism
  • Molecular Sequence Data
  • Nodal Signaling Ligands
  • Response Elements
  • Signal Transduction
  • Zebrafish / embryology
  • Zebrafish / physiology*
  • Zebrafish Proteins / genetics
  • Zebrafish Proteins / metabolism*

Substances

  • Intracellular Signaling Peptides and Proteins
  • Nodal Signaling Ligands
  • Zebrafish Proteins
  • ndr1 protein, zebrafish
  • ndr2 protein, zebrafish