Neural correlates of a clinical continuous performance test

Magn Reson Imaging. 2008 May;26(4):504-12. doi: 10.1016/j.mri.2007.09.004. Epub 2008 Feb 20.

Abstract

Functional magnetic resonance imaging (fMRI) was performed in 30 healthy adults to identify the location, magnitude, and extent of activation in brain regions that are engaged during the performance of Conners' Continuous Performance Test (CPT). Performance on the task during fMRI was highly correlated with performance on the standard Conners' CPT in the behavioral testing laboratory. An extensive neural network was activated during the task that included the frontal, cingulate, parietal, temporal, and occipital cortices; the cerebellum and the basal ganglia. There was also a network of brain regions which were more active during fixation than task. The magnitude of activation in several regions was correlated with reaction time. Among regions that were more active during task, the overall volume of supratentorial activation and cerebellar activation was greater in the left hemisphere. Frontal activation was greater in dorsal than in ventral regions, and dorsal frontal activation was bilateral. Ventral frontal region and parietal lobe activation were greater in the right hemisphere. The volume of clusters of activation in the extrastriate ventral visual pathway was greater in the left hemisphere. This network is consistent with existing models of motor control, visual object processing and attentional control and may serve as a basis for hypothesis-driven fMRI studies in clinical populations with deficits in Conners' CPT performance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Attention
  • Behavior
  • Brain / pathology
  • Brain Mapping / methods
  • Cerebellum / pathology
  • Cognition
  • Female
  • Humans
  • Magnetic Resonance Imaging / instrumentation
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Motor Activity
  • Neurons / metabolism*