Expression of AP-1 family transcription factors in the amygdala during conditioned taste aversion learning: role for Fra-2

Brain Res. 2008 May 1:1207:128-41. doi: 10.1016/j.brainres.2008.01.072. Epub 2008 Feb 9.

Abstract

Conditioned taste aversion (CTA) learning occurs after the pairing of a novel taste with a toxin (e.g. sucrose with LiCl). The immediate early gene c-Fos is necessary for CTA learning, but c-Fos alone cannot be sufficient for consolidation. The expression of other AP-1 proteins from the Fos- and Jun-families may also be required shortly after conditioning for CTA consolidation. To screen for the expression of AP-1 transcription factors within small subregions, RT-PCR analysis was used after laser capture microdissection of the amygdala. Rats were infused intraorally with 5% sucrose (6 ml/6 min) or injected with LiCl (12 ml/kg, 0.15 M, i.p.) or given sucrose paired with LiCl (sucrose/LiCl), or not treated; 1 h later their brains were dissected. The lateral (LA), basolateral (BLA), and central (CeA) subnuclei of the amgydala of single 5 microm sections from individual rats were dissected using the Arcturus PixCell II system. Semi-quantitative RT-PCR showed the consistent presence of c-Fos, Fra-2, c-Jun, and JunD in the amygdala. In situ hybridization confirmed that c-Fos and Fra-2 mRNA expression was increased in the CeA after LiCl and sucrose/LiCl treatment. Immunohistochemistry for Fra-2 revealed high baseline levels of Fra-2 protein in the BLA and CeA, but also an increase in Fra-2 in the BLA and CeA after LiCl and sucrose/LiCl treatment. The similarity of response in LiCl and sucrose/LiCl treated groups might reflect activation by LiCl in both groups. To control for the effects of LiCl, rats were tested in a learned safety experiment. Fra-2 and c-Fos were examined in response to sucrose/LiCl in rats with prior familiarity with sucrose compared to rats without prior exposure to sucrose. The familiar (pre-exposure) group showed a significantly decreased number of Fra-2-positive cells compared with the novel group in the BLA, but not in the CeA. Because pre-exposure to sucrose attenuates CTA learning, a decreased cellular response in pre-exposed rats suggests a specific correlation with CTA learning. Changes in Fra-2 and c-Fos expression in the BLA and CeA at the time of conditioning, together with constitutive expression of c-Jun and JunD, may contribute to CTA learning.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amygdala / physiology*
  • Analysis of Variance
  • Animals
  • Avoidance Learning / physiology*
  • Behavior, Animal
  • Food Preferences
  • Fos-Related Antigen-2 / physiology*
  • Gene Expression / drug effects
  • Gene Expression / physiology
  • Gene Expression Regulation / drug effects
  • Gene Expression Regulation / physiology*
  • Lithium Chloride / pharmacology
  • Male
  • Proto-Oncogene Proteins c-fos / genetics
  • Proto-Oncogene Proteins c-fos / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Taste*

Substances

  • Fos-Related Antigen-2
  • Proto-Oncogene Proteins c-fos
  • Lithium Chloride