Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by chinese hamster ovary cells in a pH-dependent manner

Biotechnol Bioeng. 1994 Mar 15;43(6):505-14. doi: 10.1002/bit.260430611.

Abstract

The N-linked glycosylation of the recombinant protein mouse placental lactogen-I (mPL-I) expressed by Chinese hamster ovary (CHO) cells under nongrowth conditions was inhibited by increasing levels of ammonium chloride (3 and 9 mM) in a serum-free, protein expression medium. The effect of ammonia on glycosylation was dependent on the extracellular pH (pH(e)). In media containing 0 and 9 mM ammonium chloride, the percentage of the most heavily glycosylated forms of secreted mPL-I decreased from ca. 90% to ca. 25% at pH(e) 8.0, and from ca. 90% to ca. 65% at pH(e) 7.6, respectively. However, at pH(e) 7.2, the most heavily glycosylated forms of secreted mPL-I decreased from ca. 90% to ca. 80% in media containing 0 and 9 mM ammonium chloride, respectively. Inhibition of mPL-I glycosylation was found to correlate with the calculated concentrations of the ammonia species (NH(3)). Control experiments showed that the ammonia effect on mPL-I glycosylation could not be attributed to increased chloride concentration or osmolarity, or to extracellular events after secretion of the recombinant protein into the supernatant. Ammonium chloride, 9 mM, inhibited the expression rate of MPL-I by CHO cells at low pH(e). (c) 1994 John Wiley & Sons, Inc.