Production of poly(D-3-hydroxybutyrate) from CO(2), H(2), and O(2) by high cell density autotrophic cultivation of Alcaligenes eutrophus

Biotechnol Bioeng. 1995 Feb 5;45(3):268-75. doi: 10.1002/bit.260450312.

Abstract

Hydrogen-oxidizing bacterium, Alcaligenes eutrophus autotrophically produces biodegradable plastic material, poly(D-3-hydroxybutyrate), P(3HB), from carbon dioxide, hydrogen, and oxygen. In autotrophic cultivation of the microorganism, it is essential to eliminate possible occurrence of gas explosions from the fermentation process. We developed a bench-plant scale, recycled-gas, closed-circuit culture system equipped with several safety features to perform autotrophic cultivation of A. eutrophus by maintaining the oxygen concentration in the substrate gas phase below the lower limit for a gas explosion (6.9%). The culture vessel utilized a baskettype agitator, resulting in a K(L) a value of 2970 h(-1). Oxygen gas was also directly fed to the fermentor separately from the other gases. As a result, 91.3 g . dm(-3) of the cells and 61.9 g . dm(-3) of P(3HB) were obtained after 40 h of cultivation under this oxygen-limited condition. The results compared favorably with those reported for mass production of P(3HB) by heterotrophic fermentation. (c) 1995 John Wiley & Sons, Inc.