Kinetic analysis of late steps of eukaryotic translation initiation

J Mol Biol. 2009 Jan 16;385(2):491-506. doi: 10.1016/j.jmb.2008.10.029. Epub 2008 Oct 19.

Abstract

Little is known about the molecular mechanics of the late events of translation initiation in eukaryotes. We present a kinetic dissection of the transition from a preinitiation complex after start codon recognition to the final 80S initiation complex. The resulting framework reveals that eukaryotic initiation factor (eIF)5B actually accelerates the rate of ribosomal subunit joining, and this acceleration is influenced by the conformation of the GTPase active site of the factor mediated by the bound nucleotide. eIF1A accelerates joining through its C-terminal interaction with eIF5B, and eIF1A release from the initiating ribosome, which occurs only after subunit joining, is accelerated by GTP hydrolysis by eIF5B. Following subunit joining, GTP hydrolysis by eIF5B alters the conformation of the final initiation complex and clears a path to promote rapid release of eIF1A. Our data, coupled with previous work, indicate that eIF1A is present on the ribosome throughout the entire initiation process and plays key roles at every stage.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Eukaryotic Initiation Factors / metabolism
  • Guanosine Triphosphate / metabolism
  • Kinetics
  • Peptide Chain Initiation, Translational*
  • Protein Binding
  • Protein Interaction Domains and Motifs
  • RNA, Messenger / metabolism
  • Ribosomes / metabolism

Substances

  • Eukaryotic Initiation Factors
  • RNA, Messenger
  • Guanosine Triphosphate