Cell traction forces direct fibronectin matrix assembly

Biophys J. 2009 Jan;96(2):729-38. doi: 10.1016/j.bpj.2008.10.009.

Abstract

Interactions between cells and the surrounding matrix are critical to the development and engineering of tissues. We have investigated the role of cell-derived traction forces in the assembly of extracellular matrix using what we believe is a novel assay that allows for simultaneous measurement of traction forces and fibronectin fibril growth at discrete cell-matrix attachment sites. NIH3T3 cells were plated onto arrays of deformable cantilever posts for 2-24 h. Data indicate that developing fibril orientation is guided by the direction of the traction force applied to that fibril. In addition, cells initially establish a spatial distribution of traction forces that is largest at the cell edge and decreases toward the cell center. This distribution progressively shifts from a predominantly peripheral pattern to a more uniform pattern as compressive strain at the cell perimeter decreases with time. The impact of these changes on fibrillogenesis was tested by treating cells with blebbistatin or calyculin A to tonically block or augment, respectively, myosin II activity. Both treatments blocked the inward translation of traction forces, the dissipation of compressive strain, and fibronectin fibrillogenesis over time. These data indicate that dynamic spatial and temporal changes in traction force and local strain may contribute to successful matrix assembly.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Animals
  • Cell Adhesion / physiology
  • Extracellular Matrix / metabolism*
  • Fibronectins / physiology*
  • Fluorescent Antibody Technique
  • Heterocyclic Compounds, 4 or More Rings / pharmacology
  • Image Processing, Computer-Assisted
  • Marine Toxins
  • Mice
  • Myosin Type II / antagonists & inhibitors
  • Myosin Type II / drug effects
  • Myosin Type II / metabolism
  • NIH 3T3 Cells
  • Oxazoles / pharmacology

Substances

  • Fibronectins
  • Heterocyclic Compounds, 4 or More Rings
  • Marine Toxins
  • Oxazoles
  • blebbistatin
  • calyculin A
  • Myosin Type II