A phase-contrast MRI study of physiologic cerebral venous flow

J Cereb Blood Flow Metab. 2009 Jun;29(6):1208-15. doi: 10.1038/jcbfm.2009.29. Epub 2009 Apr 8.

Abstract

Although crucial in regulating intracranial hydrodynamics, the cerebral venous system has been rarely studied because of its structural complexity and individual variations. The purpose of our study was to evaluate the organization of cerebral venous system in healthy adults. Phase-contrast magnetic resonance imaging (PC-MRI) was performed in 18 healthy volunteers, in the supine position. Venous, arterial, and cerebrospinal fluid (CSF) flows were calculated. We found heterogeneous individual venous flows and variable side dominance in paired veins and sinuses. In some participants, the accessory epidural drainage preponderated over the habitually dominant jugular outflow. The PC-MRI enabled measurements of venous flows in superior sagittal (SSS), SRS (straight), and TS (transverse) sinuses with excellent detection rates. Pulsatility index for both intracranial (SSS) and cervical (mainly jugular) levels showed a significant increase in pulsatile blood flow in jugular veins as compared with that in SSS. Mean cervical and cerebral arterial blood flows were 714+/-124 and 649+/-178 mL/min, respectively. Cerebrospinal fluid aqueductal and cervical stroke volumes were 41+/-22 and 460+/-149 microL, respectively. Our results emphasize the variability of venous drainage for side dominance and jugular/epidural organization. The pulsatility of venous outflow and the role it plays in the regulation of intracranial pressure require further investigation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain / blood supply*
  • Cerebrovascular Circulation*
  • Female
  • Health
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Veins