PU.1 and partners: regulation of haematopoietic stem cell fate in normal and malignant haematopoiesis

J Cell Mol Med. 2009 Nov-Dec;13(11-12):4349-63. doi: 10.1111/j.1582-4934.2009.00757.x. Epub 2009 Apr 6.

Abstract

During normal haematopoiesis, cell development and differentiation programs are accomplished by switching 'on' and 'off' specific set of genes. Specificity of gene expression is primarily achieved by combinatorial control, i.e. through physical and functional interactions among several transcription factors that form sequence-specific multiprotein complexes on regulatory regions (gene promoters and enhancers). Such combinatorial gene switches permit flexibility of regulation and allow numerous developmental decisions to be taken with a limited number of regulators. The haematopoietic-specific Ets family transcription factor PU.1 regulates many lymphoid- and myeloid-specific gene promoters and enhancers by interacting with multiple proteins during haematopoietic development. Such protein-protein interactions regulate DNA binding, subcellular localization, target gene selection and transcriptional activity of PU.1 itself in response to diverse signals including cytokines, growth factors, antigen and cellular stresses. Specific domains of PU.1 interact with many protein motifs such as bHLH, bZipper, zinc fingers and paired domain for regulating its activity. This review focuses on important protein-protein interactions of PU.1 that play a crucial role in regulation of normal as well as malignant haematopoiesis. Precise delineation of PU.1 protein-partner interacting interface may provide an improved insight of the molecular mechanisms underlying haematopoietic stem cell fate regulation. Its interactions with some proteins could be targeted to modulate the aberrant signalling pathways for reversing the malignant phenotype and to control the generation of specific haematopoietic progeny for treatment of haematopoietic disorders.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Lineage*
  • Hematologic Neoplasms / metabolism*
  • Hematologic Neoplasms / pathology*
  • Hematopoiesis*
  • Hematopoietic Stem Cells / cytology*
  • Hematopoietic Stem Cells / metabolism*
  • Humans
  • Protein Binding
  • Proto-Oncogene Proteins / chemistry
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism*
  • Trans-Activators / chemistry
  • Trans-Activators / genetics
  • Trans-Activators / metabolism*

Substances

  • Proto-Oncogene Proteins
  • Trans-Activators
  • proto-oncogene protein Spi-1