The patterns of spontaneous Ca2+ signals generated by ventral spinal neurons in vitro show time-dependent refinement

Eur J Neurosci. 2009 Apr;29(8):1543-59. doi: 10.1111/j.1460-9568.2009.06708.x.

Abstract

Embryonic spinal neurons maintained in organotypic slice culture are known to mimic certain maturation-dependent signalling changes. With such a model we investigated, in embryonic mouse spinal segments, the age-dependent spatio-temporal control of intracellular Ca(2+) signalling generated by neuronal populations in ventral circuits and its relation with electrical activity. We used Ca(2+) imaging to monitor areas located within the ventral spinal horn at 1 and 2 weeks of in vitro growth. Primitive patterns of spontaneous neuronal Ca(2+) transients (detected at 1 week) were typically synchronous. Remarkably, such transients originated from widespread propagating waves that became organized into large-scale rhythmic bursts. These activities were associated with the generation of synaptically mediated inward currents under whole-cell patch-clamp. Such patterns disappeared during longer culture of spinal segments: at 2 weeks in culture, only a subset of ventral neurons displayed spontaneous, asynchronous and repetitive Ca(2+) oscillations dissociated from background synaptic activity. We observed that the emergence of oscillations was a restricted phenomenon arising together with the transformation of ventral network electrophysiological bursting into asynchronous synaptic discharges. This change was accompanied by the appearance of discrete calbindin immunoreactivity against an unchanged background of calretinin-positive cells. It is attractive to assume that periodic oscillations of Ca(2+) confer a summative ability to these cells to shape the plasticity of local circuits through different changes (phasic or tonic) in intracellular Ca(2+).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 6-Cyano-7-nitroquinoxaline-2,3-dione / metabolism
  • Action Potentials / physiology*
  • Animals
  • Calbindins
  • Calcium / metabolism*
  • Calcium Signaling / physiology*
  • Cells, Cultured
  • Embryo, Mammalian / anatomy & histology
  • Embryo, Mammalian / physiology
  • Enzyme Inhibitors / metabolism
  • Excitatory Amino Acid Antagonists / metabolism
  • Mice
  • Neurons / cytology
  • Neurons / metabolism*
  • Patch-Clamp Techniques
  • Ryanodine / metabolism
  • S100 Calcium Binding Protein G / metabolism
  • Sodium Channel Blockers / metabolism
  • Spinal Cord / cytology*
  • Spinal Cord / embryology
  • Tetrodotoxin / metabolism
  • Thapsigargin / metabolism
  • Time Factors

Substances

  • Calbindins
  • Enzyme Inhibitors
  • Excitatory Amino Acid Antagonists
  • S100 Calcium Binding Protein G
  • Sodium Channel Blockers
  • Ryanodine
  • Tetrodotoxin
  • Thapsigargin
  • 6-Cyano-7-nitroquinoxaline-2,3-dione
  • Calcium