Individual hydrothermal vents at Axial Seamount harbor distinct subseafloor microbial communities

FEMS Microbiol Ecol. 2009 Dec;70(3):413-24. doi: 10.1111/j.1574-6941.2009.00747.x. Epub 2009 Sep 21.

Abstract

The microbial community structure of five geographically distinct hydrothermal vents located within the Axial Seamount caldera, Juan de Fuca Ridge, was examined over 6 years following the 1998 diking eruptive event. Terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene sequence analyses were used to determine the bacterial and archaeal diversity, and the statistical software primer v6 was used to compare vent microbiology, temperature and fluid chemistry. Statistical analysis of vent fluid temperature and composition shows that there are significant differences between vents in any year, but that the fluid composition changes over time such that no vent maintains a chemical composition completely distinct from the others. In contrast, the subseafloor microbial communities associated with individual vents changed from year to year, but each location maintained a distinct community structure (based on TRFLP and 16S rRNA gene sequence analyses) that was significantly different from all other vents included in this study. Epsilonproteobacterial microdiversity is shown to be important in distinguishing vent communities, while archaeal microdiversity is less variable between sites. We propose that persistent venting at diffuse flow vents over time creates the potential to isolate and stabilize diverse microbial community structures between vents.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Archaea / classification
  • Archaea / genetics
  • Archaea / isolation & purification*
  • Bacteria / classification
  • Bacteria / genetics
  • Bacteria / isolation & purification*
  • Biodiversity*
  • DNA, Archaeal / genetics
  • DNA, Bacterial / genetics
  • Geologic Sediments / microbiology
  • Polymorphism, Restriction Fragment Length
  • RNA, Ribosomal, 16S / genetics
  • Seawater / chemistry
  • Seawater / microbiology*
  • Temperature
  • Water Microbiology*

Substances

  • DNA, Archaeal
  • DNA, Bacterial
  • RNA, Ribosomal, 16S