The myofibroblast: paradigm for a mechanically active cell

J Biomech. 2010 Jan 5;43(1):146-55. doi: 10.1016/j.jbiomech.2009.09.020. Epub 2009 Oct 3.

Abstract

Tissues lose mechanical integrity when our body is injured. To rapidly restore mechanical stability a multitude of cell types can jump into action by acquiring a reparative phenotype-the myofibroblast. Here, I review the known biomechanics of myofibroblast differentiation and action and speculate on underlying mechanisms. Hallmarks of the myofibroblast are secretion of extracellular matrix, development of adhesion structures with the substrate, and formation of contractile bundles composed of actin and myosin. These cytoskeletal features not only enable the myofibroblast to remodel and contract the extracellular matrix but to adapt its activity to changes in the mechanical microenvironment. Rapid repair comes at the cost of tissue contracture due to the inability of the myofibroblast to regenerate tissue. If contracture and ECM remodeling become progressive and manifests as organ fibrosis, the outcome of myofibroblast activity will have more severe consequences than the initial damage. Whereas the pathological consequences of myofibroblast occurrence are of great interest for physicians, their mechano-responsive features render them attractive for physicists and bioengineers. Their well developed cytoskeleton and responsiveness to a plethora of cytokines fascinate cell biologists and biochemists. Finally, the question of the myofibroblast origin intrigues stem cell biologists and developmental biologists-what else can you ask from a truly interdisciplinary cell?

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Cell Adhesion
  • Cell Differentiation
  • Cytoskeleton / metabolism
  • Extracellular Matrix / metabolism
  • Fibroblasts / cytology*
  • Fibroblasts / physiology*
  • Muscles / cytology
  • Muscles / metabolism
  • Myocytes, Smooth Muscle / cytology
  • Wound Healing